Improving Prediction Accuracy Using a
Calibration Postprocessor

David B. Rosen Harry B. Burke Philip H. Goodman
Department of Medicine University of Nevada School of Medicine
New York Medical College 77 Pringle Way #H1-166
Valhalla, New York 10595 USA Reno, Nevada 89520 USA
<d.rosen@ieee.org> <burke @unr.edu> <goodman@unr.edu>

ABSTRACT. We propose using a calibration module to augment the architecture of a classifier, mapping numerically-
arbitrary ordinal discriminant values to accurate probability predictions. Results from the application of a simple
memory-based nonparametric classifier to a large breast cancer data set suggest that the bias resulting from a very
large smoothing (regularization) parameter is sometimes manifested largely as miscalibration, rather than impairing
discrimination. So even when the original classifier is itself designed to estimate probabilities, the separate calibration
step allows that classifier to focus on improving its ability to discriminate between two classes, by increasing its
smoothing or regularization, attaining lower variance, and thus improving overall performance. The calibration
method is motivated here by setting thresholds using decision theory.

1 PROBABILITY ESTIMATION VS. DISCRIMINATION

When methods providing a single real-valued prediction ! are used for two-class? discrete classification, one often
applies some threshold as a “postprocessing” step. If the continuous prediction is intended to be of an input-conditional
class probability®, then one can specify the threshold in advance, given some assumption about the relative “cost” of the
two types of misclassification error. The most common (though not always most appropriate) assumption is of equal
costs, leading to a threshold of % A prediction that is a probability estimate has the advantage of being meaningful
even before thresholding, so it can easily be used by (perhaps several) decision-makers regardless of the costs entering
into their own (perhaps many) decision problems. For example, if a weather forecast states that “it will rain today with
probability 0.2”, various decisions can be made, such as whether to carry an umbrella or cancel an outdoor event, any

of which might have different costs entering into them and thus use different decision thresholds.

Alternatively, the continuous prediction of a classifier may be merely a discriminant, in which case the optimal threshold
may have to be chosen empirically for a particular decision problem. This threshold selection process is a type of
calibration, as it implicitly labels a particular point on the previously numerically-arbitrary (i.e. ordinal) discriminant
scale as a specific probability (e.g. % for an equal-costs decision).

2 MEMORY-BASED GAUSSIAN KERNEL METHOD

In this paper we examine the choice of the kernel width (smoothin g or regularization parameter) in a local memory-based
nonparametric classifier. We use gaussian kernels N(x; u,a'z) in class-conditional kernel (a.k.a. Parzen window)
density estimation (Rosenblatt, 1956), with a single (common to both classes) scalar kernel width o. The posterior
probability estimate of interest is then p(class 1|x) = [Zk in class 1V (x; Xg,02)] /[Xan k N(x; Xi,0?%)], when
presented with input feature vector x, where X is the input feature vector of the kth stored “training” case. The formula
above is a special case of the Nadaraya(1964)-Watson(1964) kernel-weighted average of training-set target values, or
in a more parametric context, normalized radial basis functions (Moody & Darken, 1989). Hardware-oriented neural
network implementations exist (Specht, 1991). At the outset, we normalize each input component (feature) to have a
standard deviation of 1 in the training data.

'i.e. response to an input feature pattern during recall (performance)

%In the interest of simplicity, we limit our discussion to two-class problems in this paper.

3Called a posterior probability in the pattern recognition literature, if the classifier used Bayes Theorem to calculate it from a
prior probability and the class-conditional probabilities of the input.

3 PREDICTIONS AS PROBABILITY ESTIMATES

The accuracy of a probability estimator can be evaluated on a data set using a strictly proper scoring rule, defined
as a loss function whose expectation is optimized by — and only by — the true probability that_ generated the data
(or at least generated your expectation) (Savage, 1971). Familiar examples include .lh.c quadratic (squared error or
Brier score) and logarithmic (c.g. cross-entropy) loss functions. Any particular decision problem loss, sgch as the
misclassification error (zero or one for each prediction), is a proper scoring rule, i.e. optimized in expectation by the
true probability, but not strictly proper, so its expecation may be optimized by other probability estimates in additlpn to
the correct one. In particular, such a loss function is only sensitive to whether the estimate is above or below a single
threshold. For this reason among others, the smoothing parameter is often chosen (Hand, 1982; Silverman, 1986;
Hirdle, 1991) to minimize the squared error.

To prevent overfitting the training set, cross-validation can be used for a reasonably unbiased estimate of the true
(generalization) squared error. We used leave-out-one cross-validation, which entails using all the training data except
a given case, in order to calculate the prediction for that case, and calculating the squared error of these jacknife
predictions. Because for each case of a given class, the effective training set (of size n — 1) has one fewer case of that
class, the prediction is slightly biased towards the other (i.e. wrong) class. We correct for this by arranging for the total
weight given to the cases of each class in the kernel-weighted average to always reflect the overall prevalence of that
class. Ordinarily this correction would be considered negligible; its importance to us will be explained in Section 4.

The kernel width controls the degree of regularization (shrinkage). A narrow kernel leads to high variance but low
bias (undersmoothed, overfit); a wide kernel does the opposite. The (in)accuracy as a function of regularization is
ordinarily expected to be U-shaped.

We report experiments conducted using subsets of the Commission on Cancer Patient Care Evaluation (PCE) breast
cancer data. The PCE data were collected by the American College of Surgeons (ACOS), jointly sponsored with the
American Cancer Society, by requesting data from individual tumor registries on the first 25 cases of first diagnosis
breast cancer (among others) seen in 1983 at each ACOS-accredited hospital in the United States. In particular, we
used 5169 training cases and 3102 test cases, chosen for their lack of missing variable values. For each case the
data describe various clinical and pathologic prognostic factors (none from images or signals) as determined at the
time of diagnosis, coded as 54 features. We used 5-year survival as our binary target class variable. A U-shaped
average(-over-cases) squared error does appear in Figure 1, with an “optimal” width of about ¢ = 2 input standard
deviations. However, the squared error there is still poor compared, for example, to a vanilla multi-layer perceptron
(horizontal line indicated). Vanilla logistic regression does almost as well as the MLP; we have not thus far seen strong
evidence of nonlinearity in this data set.

4 PREDICTIONS AS DISCRIMINANT SCORES

The squared error (or another proper scoring rule) measures the inaccuracy in the predictions as probability estimates.
To treat the predictions as mere discriminants, we need an accuracy criterion that depends only on the order of the
predictions (which predictions are greater than which others), but not on their numerical values per se.

One such criterion is the ¢ index. We look at (all possible) pairs of training cases such that one is in class 1 (survived)
and the other in class 0 (did not survive). The better the predictions are as a discriminant scale, the more often that
the discriminant (assumed originally to be the estimated probability of class 1) is greater for the class 1 case than for
the class O case. The c index is defined as the fraction of pairs for which this is true. It also equals the area under
the empirical receiver operating characteristic (ROC) curve*, which is widely used in signal detection and medical
decision analysis. If the predictions were unrelated to the true class, ¢ would be equal to %; if all the predictions for
class 1 cases were greater than all those for class 0 cases, we would have perfect discrimination (separation) of the
classes and ¢ = 1.

Figure 2 shows 1 — ¢ (so lower is better, as with squared error) as a function of kernel width o. Note that it appears
to improve in a monotone fashion, without the bias-variance U shape. For example, width 32 has a significantly
(p < .001) better 1 — c than width 2. In contrast, the squared error showed width 32 being significantly (p = .01)
worse than width 2; the latter was the best width by this criterion.

As the kernel width increases, all the training points are given nearly the maximum weight (they are well within the
width of the kernel), so all predictions approach the overall prevalence of class 1 in the training set (about 0.8). Figure 3
is a scatterplot where each dot represents one case, showing the width= 2 prediction vs. the width= 32 prediction

“plot Pr(decision = I|class = 1) vs. Pr(decision = 1|class = 0) for all decision thresholds

for that case. Although a large kernel width compresses the predictions into a narrow range, Figure 4 zooms in on
the horizontal axis to show that the predictions are strongly correlated at the different widths, demonstrating how the
relative order can be preserved even when the numerical values are changed a great deal.

We can now see the importance of the prevalence correction described in Section 3. At large kernel widths, small
differences in the prediction carry a lot of information; these differences would often be completely washed out by the
effect of the prevalence differences in the n — 1 remaining training cases according to the class of the case being left
out.

5 CALIBRATING A SINGLE DECISION THRESHOLD

We use a hypothetical decision problem to illustrate how treating the predictions as a discriminant rather than taking
them literally as a probability can give better results. Suppose that for current breast cancer patients it must be decided
whether a new treatment Z will be given. We have some external knowledge about Z: it saves about half the patients
who otherwise would have died. We assign a “cost” of 20 to death, and a “cost” of 1 to the side effects and complication
risks of treatment Z itself.

No patients in our collected data received Z (since it is new), but presumably, better predictions of patient outcome
without Z will enable us to make better decisions about when it is worth the risk to give Z. We wish to use the existing

0.21 -, , , : . .
0210 Test set ¢ | ': 1
 predict train set mean o
= 0.19} Traip set lgave—out—l O C 08
l;-].: 0.18| \predict train set mean T
T 017} :": 0.6
<
g 016K — B 2 04
< 0.15) x5 5
; 0.14 " Calibr’d (Sec. 6): 2 0.2
| test set W <
0.13; MLP on test set *_ ¢ 0 . . . ;
0.12 .)))) S0 02 04 06 08 1

1 2 4 8§ 16 pred. with kernel width = 32
kernel width (std. dev. units)

Figure 1: An (in)accuracy measure for Figure 3: Jacknife predictions on each

probabilities. training case.
o5~ T
(any) Constant prediction __ A
Train set leave-out-1 - 1
0.4} Test set .. | g 0.8
: MLP on test set H :
_g 0.3 T 06
E £
Y02l p 04
- E 02
0.1 -
g0 : : : :
20801 0.802 0.803 0.804 0.805 0.806

M1 pred. with kernel width = 32
kernel width (std. dev. units)

Figure 2: An (in)accuracy measure for Figure 4: Expand the important region
of Figure 3

discrimination only.

Table la Table Ib

width= 2 width= 32 width= 2 width= 32
(thresh=.9) (thresh = .9) thresh= .9028 || thresh = .80{1727
give surv die surv die surv die surv die
VA w/oZ | woZ || woZ | wloZ wloZ | wloZ || wloZ w/oZ
don’t: 77T 75 0 0 707 70 1210 100
do: 1696 554 2473 629 1766 559 1263 529
” regret = 2371 ” regret = 2473 ” “ regret = 2396 ” regret = 2163 ”

test set to determine how good (in expectation) our decisions would have been on those patients if Z had been available
at that time.
If a given patient in our data set did in fact die, then they “would die without treatment Z”. If she had received Z, the

outcome would have been survival with probability 0.5 . So the expected loss for this patient due to death is half that
of certain death. Thus, we calculate the total loss matrix as:

would survive without trtmt. Z | would die without trtmt. Z,

don’t give trtmt. Z 0 20
do give trtmt. Z 1 20x05+1=11

Decision theory then gives the optimal decision rule: Give treatment 7 if and only if the probability of surviving without
it is less than 0.9, i.e. decision threshold is 0.9 In our test set there is an inevitable loss of 629 deaths x11 = 6919.
Define regret as loss minus inevitable loss, so that a regret of zero is obtained for perfect prediction.

If we treat the predictions as probability estimates, we will naively apply threshold 0.9 to the two classifiers (having
kernel widths 2 and 32 respectively). The resulting two-by-two “misclassification” (actually misdecision) matrices
(showing numbers of cases) for the test set, and resulting total regret, are shown in Table 1a, indicating that we should
prefer the predictions of the width= 2 classifier — as with the earlier squared error result.

Now consider treating the predictions as (merely) a discriminant. We optimize the threshold to give the least least
regret on the training set (jacknife). Table 1b shows the chosen threshold value, misdecision matrix on the independent
test set, and resulting total regret. With “recalibrated” thresholds, we favor width= 32 over width= 2. With a regret
of 2163, we have also improved from the best non-recalibrated regret of 2371, demonstrating the benefit of optimizing
the threshold. It can be shown that we would have chosen the same discriminant threshold for any decision loss matrix
that is “equivalent” in the sense that it has the same probability threshold.

6 CALIBRATION OF ALL PREDICTION VALUES

In order to regain the advantage of obtaining a probability estimate rather than e 1

a particular thresholded decision, we need to recalibrate the entire prediction 2

scale, i.e. find a continuous (and non-decreasing) mapping from the original 2 08

prediction to a probability prediction. g 06

The previous Section indicates that the calibration should map a discriminant 3 04

value of about .804727 to a probability estimate of .9. If we were to sweep _ig '

through decision problem probability thresholds continuously from 0 to 1, 3 02

optimizing the discriminant threshold as we went, we see the regret change g 0 i

only when the discriminant threshold crosses over the discriminant value for a 0.801 0.802 0.803 0.804 0.805 0.806
case, changing the decision for that case. So it suffices to construct an ordered prediction

lookup tabl.e, with one entry per training case, giving the discriminant and Figure 5: Calibration curve for
corresponding probability estimate. Between these values we would have to width=32 (from train set jacknife
interpolate. predictions).

®Note that a symmetric-loss decision (misclassification rate) problem would render these predictions almost useless given how
few predictions would be less than the threshold of 1.

There are at least two strategies for efficiently generating the calibration lookup table with one entry for each cal?brat?on
data set point, without explicitly performing any nonlinear optimizations. One is to start with an identity cahbragon
where each original prediction is mapped to itself (or in fact to the corresponding element of any other nondccreasxpg
sequence), and go through the cases, moving values towards the outcome values to the maximum extent allowgd whlle
maintaining the nondecreasing ordering (Rosen, 1994). The second strategy is to start with the best possible calibration
values ignoring the monotonicity constraint, namely the true outcomes (target values) in this data set, and. then go
through the cases sequentially, enforcing monotonicity. This is the strategy employed by the “Pool Adjacent Violators”
(Barlow et al., 1972) algorithms used to perform monotone regression; the Appendix describes how we implemented
one such algorithm.

Figure 5 shows the resulting calibration calculated solely from our training set (jacknife predictions). We incorporated
this mapping® into our prediction system as a postprocessor. The resulting predictions on the still-independent test
set have an average squared error of = .131 [+.0046] (point with standard-error bar in Figure 1), which is no longer
significantly different from the MLP result.

7 DISCUSSION

In the present experiments, much of the “bias” due to oversmoothing (over-regularization) could be calibrated away
by a postprocessing module. Greater smoothing reduced variance, and so overall accuracy improved.

We view the presence of a calibration module within the architecture of a classification system as more important than
the specific calibration algorithms it may employ. The calibration algorithm we used is nonparametric and memory-
based, and contains no architectural or regularization parameters. Alternatively, it should be straightforward to fit a
reasonably-small parametric network to the points of the calibration curve. However, one would would to be careful
to enforce monotonicity and to prevent the possibility (as for example with a linear calibration) of calibrating a future
prediction to a “probability” outside [0, 1] .

As for the choice of the classification algorithm itself, a simple local kernel classifier was well suited to these first
experiments because it is very easy to understand and interpret. Further work will be needed to establish whether this
effect is important across classifier algorithms/architectures, and across characteristics of the application domain, such
as their nonlinearity.

Despite the pedagogic focus on decision thresholds in this treatment, the same calibration algorithms can be applied
to continuous-target regression problems as well, considering the original prediction to be related to the prediction of
interest through a nondecreasing calibration curve.

APPENDIX: Implementing An Algorithm to Generate the Calibration Table

This is essentially an implementation of an “Up-and-Down Blocks” algorithm, which has been attributed to J. B. Kruskal and is
essentially a type of “Pool Adjacent Violators” algorithm (Barlow et al., 1972).

The array orig(] are the sorted original predictions for the calibration data, which in our case is the training set but with jacknife
predictions, for the n training cases. The lookup table will comprise n pairs (orig[0],cal[0]), (orig[l],cal[l]), etc. This table
(with simple interpolation) will then become the fixed calibration postprocessor for future recall performance by the system. Values
cal[0... n- 1] are initialized to corresponding values target[0... n - 1], which are each 0 or 1 to indicate the true class of the
case.

Now we must modify cal[] just enough (away from the target values) to enforce the stringent constraint: calibration must be a
nondecreasing (and single-valued) function. When the target value decreases (from 1 to 0) from case i to case i + 1, the best we
can do under the constraint is assign equal calibrated predictions to these two cases. In this way, training cases agglomerate with
their neighbors into sets of consecutive case indices. The cal[] values for all members of a given such set are constrained to be
equal, and the best value to give them is the mean of the corresponding set of target values, which optimizes any proper scoring rule
on this set. There are no arbitrary groupings specified in advance — the algorithm groups cases only where necessary in order to
solve the constrained optimization problem.

We employ an ordered list of index sets partitioning indices {0 ... n - 1} into length(list) mutually exclusive and exhaustive sets.
The list is initialized to contain n index sets, each such set containing a single distinct index: ({0}, {1},...,{n = 1}). Thento
enforce single-valuedness, any adjacent sets in the list having exactly the same orig[] value are merged, meaning that two sets
are replaced by a single one containing the union of indices from both (so the list of sets gets shorter by one set), and all cal[the
merged set] values are set to the mean among these values.

The list of course has a first_set and last_set. There is a pointer to one set in the list, this set being termed the

Swith the crude constant (not even linear) interpolation: truncation to the next lower table entry

Procedure |

while (current_set is not last_set) do

> if cal[member of current_set] >= cal[member of next_set] then
> > merge next_set with current_set

> > current_set pointer points to that merged set

> > decrement current_set pointer (if current_set is not first_set)
> else increment current_set pointer

V.V VYV VYV

current_set. That pointer is initialized so that current_set is first_set. Procedure | is then executed. Recall that
cal[member of a set | does not depend on which member of the set, since we ensure that all these components of cal[] remain
equal. The decrement step serves to allow the merged current_set (with its new cal[] values) to be merged with the previous
set if necesary, and so on back down the list. Note also that the mean of cal[current_set] values is always the same as the
mean of target[current_set] values.

Acknowledgements

Supported in part by the U.S. Army Medical Research Command (DAMD-17-94-J4383), U.S. Agency for Health Care Policy and
Research (AHCPR-HS06830), American Cancer Society, and the American College of Surgeons. Some of this research was begun
at Boston University, supported in part by U.S. DARPA (AFOSR 90-0083), and more was begun by all the authors while at the
University of Nevada School of Medicine, in the Department of Medicine. That department, and the office of the Dean of the
Graduate School, provided additional funding.

References

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D. (1972). Statistical Inference under Order Restrictions. Wiley,
London.

Hand, D. J. (1982). Kernel Discriminant Analysis. Research Studies Press, Chichester.

Hardle, W. (1991). Smoothing Techniques With Implementation in S. Springer-Verlag, New York.

Moody, J., & Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1, 281-294.
Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Appl., 10, 186—190.

Rosen, D. B. (1994). Ordinal discrimination index for any proper scoring rule. Medical Decision Making, 14, 440. Published
Abstract.

Rosenblatt, M. (1956). Remarks on some non-parametric estimates of a density function. Ann. Math. Stat., 27, 642-669.
Savage, L. J. (1971). Elicitation of personal probabilities and expectations. J. American Stat. Assoc., 66, 783-801.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.

Specht, D. F. (1991). A general regression neural network. IEEE Tr: Neural Networks, 2, 568-576.

Watson, G. S. (1964). Smooth regression analysis. Sankhya, A26, 359-372.

