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Abstract

In this study, we evaluated the accuracy of a neural net-
work in predicting 5-, 10- and 15-year breast-cancer-spe-
cific survival. A series of 951 breast cancer patients was
divided into a training set of 651 and a validation set of
300 patients. Eight variables were entered as input to the
network: tumor size, axillary nodal status, histological
type, mitotic count, nuclear pleomorphism, tubule for-
mation, tumor necrosis and age. The area under the ROC
curve (AUC) was used as a measure of accuracy of the
prediction models in generating survival estimates for
the patients in the independent validation set. The AUC
values of the neural network models for 5-, 10- and 15-
year breast-cancer-specific survival were 0.909, 0.886
and 0.883, respectively.The corresponding AUC values
for logistic regression were 0.897, 0.862 and 0.858. Axil-
lary lymph node status (NO vs. N+) predicted 5-year sur-
vival with a specificity of 71% and a sensitivity of 77%.
The sensitivity of the neural network model was 91% at
this specificity level. The rate of false predictions at 5
years was 82/300 for nodal status and 40/300 for the neu-
ral network. When nodal status was excluded from the
neural network model, the rate of false predictions in-

creased only to 49/300 (AUC 0.877). An artificial neural
network is very accurate in the 5-, 10- and 15-year breast-
cancer-specific survival prediction. The consistently high
accuracy over time and the good predictive performance
of a network trained without information on nodal status
demonstrate that neural networks can be important tools
for cancer survival prediction.
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Introduction

There is a need for new prognostic systems in cancer
that can integrate an expanding number of prognostic fac-
tors [1]. The possibilities to integrate new variables into
existing prognostic models, such as the TNM system, are
limited [2]. An optimal system would generate survival
estimates for the individual patient using all the prognos-
tic information inherent in the available patient and
tumor characteristics [3].

Artificial neural networks have been successfully used
for pattern recognition and survival prediction in several
clinical settings [4-6]. The advantage of a neural network
is the ability of the model to capture nonlinearities and
complex interactions between factors [7, 8]. Trained on a
number of prognostic factors, neural networks have been
reported to improve the accuracy of survival prediction
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for patients with lung and colorectal cancer [9-11]. In
patients with breast cancer, earlier studies have reported
promising results for neural network models trained on
the TNM variables [10].

The decreasing incidence of lymph node and distant
metastases at the time of diagnosis in patients with breast
cancer [12] will reduce the value of the TNM staging sys-
tem in survival prediction. In this context, the primary
tumor characteristics may become the major determi-
nants in making therapy decisions and judgements re-
garding prognosis [12]. Attempts have been made to
create models that based on the primary tumor features
could predict lymph node status and identify those pa-
tients in whom an axillary nodal dissection would be indi-
cated [13-15]. The therapeutic role of lymph node remov-
al even in patients likely to be node positive has, however,
been questioned [16]. It has been shown that accurate sur-
vival predictions can be achieved using a traditional mul-
tivariate model based on the primary tumor features only
[17]. An interesting question is therefore whether a neural
network could further improve the accuracy of predic-
tions without nodal status and decrease the need for axil-
lary dissections performed only in order to obtain prog-
nostic information.

We evaluated the accuracy of neural network models
in predicting 5-, 10- and 15-year breast-cancer-specific
survival in a series of patients diagnosed with breast can-
cer within a defined geographic area. The variables used
to construct the prognostic models in this study can be
considered basic clinicopathologic characteristics and the
histologic tumor features can all be assessed from routine
stainings in nonspecialized institutions. The prognostic
accuracy of axillary lymph node status alone and logistic
regression based on the same variables as used in the neu-
ral network model were used as references. A neural net-
work model was also constructed to assess how accurately
breast-cancer-specific survival could be predicted without
information on nodal status.

Patients and Methods

Patients

In order to identify all patients diagnosed with breast cancer in
the city of Turku, Finland, from 1945 to 1984, we checked the files of
the Finnish Cancer Registry and of the two local hospitals, the Turku
University Central Hospital and the City Hospital of Turku. Histo-
logical specimens could be reviewed in 1,566 cases, and we estimated
that this accounts for about 94% of all cases with female breast can-
cer diagnosed in the city during the time period. The cause of death
was obtained from the hospital records and autopsy reports. Patients
were excluded if they received adjuvant or palliative therapy, did not
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undergo a radical operation with axillary dissection, had intraductal
or bilateral breast cancer, or distant metastases at the time of diagno-
sis. Of the remaining 1,050 patients, cases with missing data (n = 36)
and those who died of other causes than breast cancer within 5 years
were also omitted leaving 951 patients for the final analysis. These
patients were randomly assigned to a train/test set of 651 and a vali-
dation set of 300 patients. For analyses at 10 and 15 years, respective-
ly, patients who had died of intercurrent causes were excluded from
the neural network and logistic regression train/test set at the corre-
sponding time points. The percentages of patients who had died of
breast cancer of those at risk in the train/test set at 5-, 10- and 15-
years of follow-up were 28 (185/651), 41 (247/600) and 59% (279/
474), respectively. The corresponding figures in the validation set
were 29 (86/300), 43 (114/267) and 61% (130/214), respectively. The
median follow-up of the whole patient series was 17 years (range 10—
44 years).

Clinicopathological Variables

The distribution of the variables in the final patient series used in
the analysis is shown in table 1. Histological typing and evaluation of
grade components (mitotic count, nuclear pleomorphism and tubule
formation) were done according to the WHO classification [18]. The
tumors were classified into three histological types: ductal (not other-
wise specified, includes apocrine, mixed mucinous and atypical
medullary types), lobular (infiltrating lobular carcinoma with vari-
ants) and special (includes tubular, medullary, cribriform, papillary,
and pure mucinous carcinomas). The number of mitoses was ex-
pressed as an average from 10 high power fields (Leitz Orthoplan,
% 40 Plan objective), and nuclear pleomorphism was defined by the
degree of irregularity in size, shape and staining. Tumor necrosis was
graded as none, spotty, moderate or severe, but intraductal comedo
necrosis was not included in its assessment. The histological parame-
ters were determined by one pathologist (S.T.) without any knowl-
edge of the final outcome.

Neural Network

A three-layer neural network model was constructed with a com-
mercially available computer program using a modified cascade
method together with an adaptive gradient learning rule (Neural-
Works Predict, NeuralWare, Pittsburgh, Pa., USA). The cascade
mode of construction entails adding hidden nodes, one or more than
one at a time, and always connecting all the previous nodes to the
current node [19]. Direct connections between input and output
nodes were also allowed. The adaptive gradient learning rule uses
backpropagated gradient information to guide an iterative line
search algorithm. Hyperbolic tangent transfer functions were used in
the hidden layer and a sigmoid function in the output layer. Symmet-
ric activation functions, such as the hyperbolic tangent, have been
shown to result in faster training because the initial weights are ran-
domized about zero [20]. Several candidate functions were tested in
the output layer, and the standard sigmoid function was found to give
the highest accuracy on the test set. Network output ranged from 0
to 1. From the train/test set, 30% of the patients were randomly cho-
sen for the test set. During training the model was scored on this test
set to choose between different candidate hidden nodes and to avoid
overtraining. Overtraining of the network was also reduced using a
weight decay method. Several candidate networks were trained and
the network with the highest accuracy on the test set at 5, 10 and 15
years, respectively, was chosen for final analysis of accuracy on the
independent validation set.
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Statistical Analysis

The area under the receiver operating characteristic curve (AUC)
was used as a measure of accuracy of the predictor models in separat-
ing survivors from nonsurvivors [21]. The statistical comparison of
the areas under two ROC curves was performed according to Hanley
and McNeil [22]. The difference in proportions of correctly predicted
survival when comparing the neural network model to nodal status
was tested for significance using the McNemar test for paired propor-
tions. Logistic regression (SPSS for Windows, SPSS, Chicago, IIl.,
USA) was performed entering all variables, coded as in the neural
network analysis and without interaction terms. Cox proportional
hazards model was also considered as an alternative statistical mod-
el. However, we chose to present the results of the logistic regression,
because the present study analyzed binary outcomes at 5, 10 and 15
years, rather than time to event data.

Results

Two final neural network models for each time point
(5, 10 and 15 years) were chosen to generate survival esti-
mates for the patients in the independent validation set,
one that included axillary nodal status as an input vari-
able and another one from which the information on
nodal status had been excluded. The corresponding logis-
tic regression survival estimates were calculated using the
B-coefficients given in table 2.

The highest accuracy for predicting breast-cancer-spe-
cific survival in the validation set was achieved with the
neural network models including all variables (fig. 1).
When nodal status was excluded as an input variable, the
accuracy of the models decreased slightly. This was also
true for the logistic regression models. Both the neural
network models (nodal status included and excluded,
respectively) resulted in higher AUC values than the cor-
responding logistic regression models at all time points
(fig. 1, table 3). The differences did not, however, reach
statistical significance.

In the validation set, 66 of the 86 patients who died of
breast cancer within 5 years were axillary lymph node
positive, which gives a sensitivity of 77% for nodal status
in predicting 5-year survival. In 152 of the 214 patients
who were alive at 5 years, no positive nodes were found
and thus, the specificity for nodal status was 71%. At this
71% specificity level the sensitivity of the neural network
model was 90% (77/86) with all variables included and
83% (71/86) with nodal status excluded. At the same sen-
sitivity level as that achieved by nodal status (77%), the
corresponding specificities for the neural network models
were 88% (189/214) and 79% (168/214), respectively.

The total rate of false survival predictions at 5 years by
nodal status was 82/300. By changing the classification
threshold for the survival estimates generated by the neu-

Neural Networks in Breast Cancer

Table 1. Distribution of clinicopathologic variables in the train/test
and validation sets of patients with breast cancer

Clinicopathologic  Patients, n (%) Coding
VIO ES train/test set  validation set

Age continuous
Median years 58 56

Range 24-86 28-93

Primary tumor size

Tl 210(32) 103 (34) 1
T2 314 (48) 144 (48) 2
T3 83(13) 27 (9) 3
T4 44 (7) 26 (9) 4
Axillary nodal status

pNO 374 (57) 172 (57) 0
PN+ 277 (43) 128 (43) 1
Histological type categorical
Special 65(10) 33(11) -1,-1
Lobular 92 (14) 40 (13) 1,0
Ductal 494 (76) 227 (76) 0,1
Tubule formation

Extensive 18 (3) 14 (5) 1
Moderate 158 (24) 86 (29) 2
Slight/none 475 (73) 200 (67) 3
Nuclear pleomorphism

Slight 103 (16) 56 (19) 1
Moderate 387(59) 177 (59) 2
Severe 161 (25) 67 (22) 3
Mitotic count

<2 270 (41) 133 (44) 1
2-3 236 (36) 105 (35) 2
>3/HPF 145 (22) 62 (21) 3
Tumor necrosis

None 474 (73) 209 (70) 0
Spotty 95 (15) 50(17) 1
Moderate 58(9) 26 (9) 2
Severe 24 (4) 15(5) 3

HPF = High power field.

ral network model, it was possible to decrease the total
number of false predictions at 5 years with nodal status
included to 40/300 and with nodal status excluded to
49/300. Both rates of false predictions were significantly
lower than the rate for nodal status alone (McNemar p <
0.0001 and p < 0.002, respectively). The corresponding
lowest numbers of false predictions for the logistic regres-
sion models were 42/300 (nodal status included) and
55/300 (nodal status excluded).
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Discussion

0.920 1
§ In this study, we have demonstrated that a neural net-
0.880 - work model trained on a number of prognostic factors can
| accurately predict 5-, 10- and 15-year breast-cancer-spe-
S 0.840 cific survival. Our results support previous reports on the
< prognostic performance of neural network models [6, 10,
23, 24] and confirm earlier demonstrations that have
B0 5 shown cancer survival predictions to be as accurate as
] —®—Neural net (N included) those achieved by standard statistical models [11, 25, 26].
0.760 4 —#& -LR(N included)
| ——Neural net (N excluded)
- -LR (N excluded)
5 10 15 .. .
.  foll Fig. 1. AUCs for the neural network and logistic regression (LR)
ear ot ioflow-up models in predicting 5-, 10- and 15-year breast-cancer-specific sur-
vival in the validation set. N = Nodal status.
Table 2. Logistic regression coefficients and significance of covariates of 5-, 10- and 15-year breast-cancer-specific
outcome in the train/test set
Nodal status included Nodal status excluded
5 years 10 years 15 years S years 10 years 15 years
Age -0.00 0.01 0.04* -0.01 0.00 0.02*
Primary tumor size 0.52 %% 0.627%k* 0.47%* 0,87k 0.95%** 0.92%x*
Axillary nodal status 1.9 %** 1.66%** 1.9 *#*
Histological type % skksk skksk k% skeksk skksk
Categorical coding 1 0.63 1.07* 0.58 0.71* 1.05%* 0.55
Categorical coding 2 0.69* 0.91%** 1.06%** 0.99%** 1.16%** 1.24%%
Tubulus formation 0.87%* 0.32 0.39 0.80** 0.38 0.43
Nuclear pleomorphism 0.20 -0.17 -0.61* 0.12 -0.17 -0.52*
Mitotic count 0.59%** 0.72%%* 0.76%** 0.7 [##* 0.76%** 0.80%**
Tumor necrosis 0.37* 0.29* 0.23 0.26* 0.23 0.17
Constant —7.80%** —5.83%%x* —5.59%** —6.97*** —5.61%%* —5.38%**
*p<0.05; ** p<0.01; *** p < 0.001; values which are not marked by an asterisk are nonsignificant. For variable
coding see table 1.
Table 3. AUC for the neural network and logistic regression (LR) models in predicting 5-, 10- and 15-year breast-
cancer-specific survival in the validation set
5 year 10 years 15 years
AUC  95%CI AUC  95%CI AUC  95%CI
Neural net (N included) 0.909  0.874-0.944 0.886  0.847-0.925 0.883  0.836-0.929
Neural net (N excluded) 0.877  0.832-0.921 0.826  0.776-0.875 0.824  0.767-0.881
LR (N included) 0.897  0.858-0.936 0.862  0.817-0.906 0.858  0.807-0.909
LR (N excluded) 0.867  0.822-0.913 0.804  0.751-0.857 0.799  0.739-0.859
N = Nodal status; CI = confidence interval.
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In our study the neural networks were consistently, al-
though not significantly, more accurate than the corre-
sponding logistic regression models. We were also able to
show that the neural network could generate accurate pre-
dictions without information on nodal status.

The high prognostic accuracy of neural network mod-
els has been ascribed to their ability to model complex
relationships between prognostic variables [7, 27, 28]. As
compared to traditional statistical models, neural network
models can include factors that are time dependent, inter-
act with other factors or are related to prognosis in a non-
linear fashion [7, 8]. Although statistical regression mod-
els can be used to model interactions and nonlinear rela-
tionships between variables, they require explicit search
for these relationships by the model developer and may
require construction of complex interaction terms [27].

A problem that remains to be resolved in survival anal-
ysis using neural networks is the handling of patients who
die of an intercurrent cause or have incomplete follow-up.
Several models have been suggested that could make use
of the information from these patients, but none has yet
been accepted as the method of choice [29-32]. The abili-
ty to include patients with incomplete follow-up or who
die of an intercurrent cause would increase the number of
patients available for neural network training.

A strength in the present study is that the patient series
comprises nearly all breast cancer patients diagnosed
within a defined geographic area during a specified time
interval, and all having a minimum follow-up of 10 years.
The extended time period during which data have been
collected is, however, also a factor that has to be taken
into account when examining the results. There have been
changes in therapy regimens, in the number of screen-
detected tumors and in the accuracy of TNM staging. The
exclusion criteria for the final model accounted for some
of these changes; patients who received adjuvant therapy
were excluded, as were patients who did not undergo a
radical operation with axillary dissection. A prognostic
model to be used prospectively should ideally be con-
structed based on a patient series from a time period with
as little changes in diagnostic routines, staging accuracy
and therapeutic regimens as possible.

Axillary lymph node status is one of the most impor-
tant prognostic factors in breast cancer. However, a much
debated question is whether axillary lymph node dissec-
tion is indicated if the sole purpose is to gain prognostic
information, especially in view of the decreasing inci-
dence of lymph node metastases [12, 16]. When informa-
tion on nodal status was excluded from the neural net-
work model in the present study and the model was based
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solely on the histopathologic features of the primary
tumor and age, it still predicted 5-year survival with a sig-
nificantly higher accuracy than nodal status alone. The
rate of false predictions increased only from 40 to 49 at
5 years in the validation set of 300 patients, as compared
to 82 false predictions made based on axillary lymph node
status (pNO vs. pN+) as a single predictor. This shows that
accurate predictions can be achieved without information
on nodal status, but that the accuracy was yet slightly
improved when information on nodal status was included
in the model. It remains to be evaluated if the prognostic
information in nodal status can be completely substituted
using a combination of other variables. Alternatively, a
combination of information obtained from a minimally
invasive sentinel node biopsy [33] and primary tumor fea-
tures could be used to achieve a high level of prognostic
accuracy.

Future research should concentrate on collecting data
from a more recent time period and determining new
potential prognostic factors to be included in a neural net-
work model. New prognostic factors are mainly found at
the molecular-genetic level and will need prognostic sys-
tems that can capture complex interactions and nonlinear
relationships to survival [8]. We are currently collecting
data on a nationwide basis for patients diagnosed with
breast cancer in Finland during 1991-1992 with the
intent to train a neural network to be used in a prospective
study. One of the goals would be to identify those patients
whose prognosis after surgery is so good that no adjuvant
systemic therapy will be needed.

We conclude that an artificial neural network, trained
on a number of clinicopathological variables of patients
with breast cancer, predicted survival with high accuracy.
The consistent accuracy over time and the good predic-
tive performance of a network trained without informa-
tion on nodal status show that neural networks are valu-
able tools in cancer survival prediction.
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