
INTRODUCTION The clinical prediction of patient outcome is
based on the integration of one or more prognostic factors in
a descriptive or inferential statistical model. Prognostic fac-
tors are necessary and sufficient for assessing the natural his-
tory of cancer, selecting the optimal therapy and evaluating
the effectiveness of treatment (1). Because prognostic factors
are predictive to the extent that they participate in the disease

process, anything that participates in the disease process is a
potential prognostic factor. Any investigation of the disease
process, therefore, can result in the identification of new
prognostic factors. As researchers move down explanatory
levels of analysis, and especially when they explore the mole-
cular genetic level, they increase explanatory complexity. One
result of this increase in complexity is the proliferation of

prognostic factors. In addition, methodologic and technical
issues arise related to the identification, replication and vali-
dation of molecular genetic factors. The combination of the
proliferation of putative factors and the lack of replication
and validation of findings has resulted in confusion in the

prognostic factor domain (2-3).
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ABSTRACT Prognostic factors are necessary and sufficient for
assessing the natural history of cancer, selecting the optimal
therapy and evaluating the effectiveness of treatment.
Because prognostic factors are predictive to the extent that

they participate in the disease process, anything that partici-
pates in the disease process is a potential prognostic factor.

Any investigation of the disease process, therefore, can result
in the identification of new prognostic factors. As researchers
move down explanatory levels of analysis, and especially when

they explore the molecular genetic level, they increase

explanatory complexity. One result of this increase in com-
plexity is the proliferation of prognostic factors. In addition,
me!hodologic and technical issues arise related to the identi-
fication, replication and validation of molecular genetic fac-
tors. The combination of the proliferation of putative factors
and the lack of replication and validation of findings has
resulted in confusion in the prognostic factor domain.

BACKGROUND The most commonly used ovarian cancer prog-
nostic factors have been those that code for the extent of dis-
ease at diagnosis, namely, tumor location(s), lymph node

involvement and metastasis. These factors are combined
into comparable outcome-based groups by the International

Federation of Gynecology and Obstetrics' (FIGO) stages and
by the International Union Against Cancer's (UICC) TNM

categories (4). Performance status is a staging system that
depends on functional rather than pathologic variables.

Prognostic factors can be classified by their level of analysis;

demographic, anatomic-cellular and molecular-genetic (5).
Age is a demographic factor and, like most demographic fac-
tors, is not directly related to the disease process. Age is indi-
rectly related to the disease in the sense that it can be a sur-
rogate for time related disease processes and can therefore be

weakly prognostic for disease-specific events. Sex and race, to
the extent that the disease does not differ in kind by sex or
race, are demographic factors. Clearly, if the disease is dif-
ferent in different sexes or races, then two diseases exist.

In this paper we explore some of the reasons for the ambigu-

ity surrounding the non-extent of disease putative prognostic
factors and how these ambiguities can be resolved. Specifi-
cally, we: 1. define and describe prognostic factors, as a type
of predictive factor, 2. explain why, and under what condi-

tions, combining factors may increase predictive accuracy,
and 3. describe the advantages and disadvantages of com-
monly used statistical methods for combining predictive fac-
tors, and 4. recommend an approach to the reporting of prog-
nostic factor research results.

The majority of the cunent ovarian cancer prognostic factors
exist at the anatomic-cellular level, including the FIGOtrNM
factors. Most anatomic-cellular level factors are clinically
equivocal for one or more of the following reasons: 1. the fac-
tor exhibits high assay variance or high intra or inter-observer
variance, 2. the factor possesses low univariate or multivariate

predictive power, and 3. there is too much inter-study varia-
tion in the factor's assessment, for example, differences in

experimental methods, patient populations and outcomes.
Ascites and volume of residual disease can be viewed as extent
of disease factors that code for advanced disease. Histologic
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rence" and "probability of death". A risk factor's main out-
come is incidence of disease. The factor, either alone, or in
combination with other factors, is much less than 100% pre-
dictive of the disease occurring by a specified time in the
future. Risk can be viewed as a propensity for the disease.
A high-grade squamous intraepithelial lesion (HSIL), for
example, is a cytologic risk factor for subsequent cervical can-
cer. It indicates a greater propensity for cervical cancer than

a normal Papanicolaou smear.

subtype has a subjective component which increases its vari-
ance. Because there is no universal grading system there is
high inter-observer variance associated with grade. Thmor
ploidy, S-phase, DNA index and morphometric measures
have been widely investigated, as have various serum factors
including CA 125, CA 54/61, and LDH. There is a great deal
of inter-study variation is the assessment of these factors.

Recently molecular genetic factors have been investigated
including, p53 (6-9), BRCAI (10), c-erbB-2 (11), bcl-2 (12)
and factors that are thought to be related to "drug resistance",
including GSTpi expression (13), Lrp (14), and MRP (15).
There has been a great deal of controversy regarding the
validity of molecular genetic factors and none are universally
accepted. An example of why it is difficult to accept these fac-
tors is shown for p53 (Table 1). The p53 studies as a group
exhibit a great deal of variation in experimental methods,
patient populations, associated independent variables, out-
comes and other aspects of their design and execution.

A diagnostic factor's main outcome is also incidence of dis-
ease. The factor, either alone, or in combination with other
factors, is close to 100% predictive of disease. A biopsy that
shows invasive cancer is 100% predictive of the disease.

A prognostic factor's main outcome is usually death. A prog-
nostic factor is rarely a strong predictor in isolation from
other prognostic factors. Thmor locations(s) and lymph node
involvement are pro~nostic factors in ovarian cancer.

Within each type of predictive factor there are three subtypes:
1. natural-history, 2. response-to- therapy, and 3. post-thera-

py. Natural-history predictive factors predict the future occur-
rence (risk), current existence (diagnosis) or course (prog-
nostic) of a disease without a preceding treatment. For risk
and prognosis, natural history should the baseline against
which all treatments are tested. An example of a natural-his-
tory prognostic factor is any extent-of-disease factor such as
tumor size. Response-to-therapy predictive factors assume
that there are effective therapies and predict whether the
patient will respond to a particular intervention (e.g. chemo-
prevention or chemotherapy). A therapy-specific factor is, as
its name implies, specific to a particular treatment and must
be assessed in a population that only received that treatment.
An example of a therapy-specific prognostic factor is estrogen

receptor status in breast cancer. A natural-history predictive
factor may also be a response-to-therapy predictive factor if it
changes its value in response to a successful treatment. Post-
therapy predictive factors require that patients respond to the
intervention; they predict failure of the intervention. Recur-
rence is a post-therapy prognostic factor.

In this paper we explore some of the reasons for the ambigu-
ity surrounding the non-extent of disease putative prognostic
factors and how these ambiguities can be resolved. Specifi-
cally, we: 1. define and describe prognostic factors, as a type
of predictive factor, 2. explain why, and under what condi-
tions, combining factors may increase predictive accuracy,
and 3. describe the advantages and disadvantages of com-
monly used statistical methods for combining predictive fac-
tors, and 4. recommend an approach to the reporting of prog-
nostic factor research results.

PREDICTIVE AND PROGNOSTIC FACTORS A predictive factor pre-
dicts an outcome (risk of disease, existence of disease or
prognosis) by virtue of its relationship with the disease
process that causes the outcome. Terms such as marker, bio-
marker, predictor, prognosticator, indicator, surrogate factor
and intermediate biomarker have been used to identify vari-
ables that are connected to medical outcomes. The meanings
of these terms overlap and their undifferentiated use can
cause confusion. We suggest that all predictive factors are
markers of disease (i.e. they are in some way associated with
the disease process), but that not all markers of disease have
sufficient predictive power to be called predictive factors. We
will use the term factor to identify markers of disease that
either are, or have the potential to be, predictive for a given
outcome in a specified statistical model.

Determining whether a marker is a predictive factor requires
that: 1. the variable be measured in a defined population, 2.
the population be followed until enough outcomes have
occurred (e.g. deaths), and 3. the relationship between the
variable and the outcome be determined. If the variable pre-
dicts the outcome with "sufficient" accuracy .(where sufficient
varies with the question being addressed) in a specified mode!
it is called a predictive factor. If the outcome that is predic-
ted to occur always occurs, we say that the predictive factor
and the outcome are 100% linked, i.e. that the factor has a
100% predictive accuracy.

There are three types of predictive factors; risk, diagnostic,
and prognostic. They differ in their outcomes and in their
degree of factor-outcome association. "Risk" is an ambiguous
term. We will use "risk" to refer to "risk of disease". "Risk"
when used in the context of "risk of recurrence" or "risk of
death" will be called "probability", as in "probability of recur-
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Study Tissue Variable Variable assay method Variable coding % of population

p53 positive
Population Population
size characteristics

E/tabbakh

eta/. (6)

Paraffin block Nuclear protein

overexpression

Immunohisto-chemistry Negative = no staining, three

grades of staining: few cells to

<25% cell staining, 25 . <75 cell

staining, > 75% cell staining

48% positive for

p53 overexpression

221 Primary ovarian

epithelial carcinoma,

all stag!:s

Niwa et al. (7) Paraffm block p53 gene DNA Single-strand

fragments for conformational

allelic losses and pol}1norphism

mutations (PCR-SSCP)

Positive for allelic loss: het herozygous

genot}1Je and the signal intensity of a

paired allelic fragment is less than 40% of

the other paired segments.Positive for

mutations if occur on exons 4-8.

Allelic loss:

18 of 26 cases.

Mutations:

14 cases.

67 54 primary,

7 metastatic,

6 after

chemotherapy

Klemi et aL (8) Paraffin block Nuclear protein

overexpression

and DNA

fragments

for mutations

Immunohisto-chemistry Negative = no staining. two grades of cell

and Single-strand staining, two grades of cell staining

conformational equivocal <20% cell staining, positive
polymorphism > 20% cells staining

(PCR-SSCP)

44% positive.
19% equivocal

for p53

overexpression

136 Primary ovarian

epithelial

car,inoma,

all stages

Viale el al. (9) Paraffm block Nuclear protein

overexpression

Immunohisto-chemistry Negative = no staining,

positive = > 10% cell staining

62% positive 112 Primary ovarian

epithelial carcinoma,

all stages

Table 1. Comparison of p53 studies tion being asked, i.e. the specific factor-outcome relationship
being examined.

The predictive power of a factor depends on its intrinsic and
extrinsic power. The intrinsic predictive power of a factor is
related to its "connectedness" to the disease process. "Con-
nected" means associated with the disease process (where

"process" subsumes trigger, cause, etc.). The less connected
the factor is, the less predictive it is. A direct connection
means that the factor is an integral part of the disease process
itself. An indirect connection means that it is not an integral
part of the disease process, but is related to the disease
process such as being a byproduct of the disease process. The
extrinsic predictive power of the factor depends on the ques-

For a specific disease process and outcome, the predictive
accuracy of a factor depends on: 1. how closely connected the
factor is to the disease process (individual factor power) and
the orthoginality of the collected factors (degree of predictive
overlap), 2. how easy it is to collect and measure the factor, 3.
the degree to which the selected statistical method is able to
capture individual factor predictive information and to inte-
grate the information from multiple factors.

CRITERIA FOR PREDICTIVE FACTORS Predictive factors should be:
1. accurate, 2. independent, and 3. useful. Accurate means
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FindingsEvent t}1Je and rate Follow-up duration Other variables in model Treatments Replication of Results validated

another researcher's (another

results researcher with

another data set)

Median 7 yem No NoSurgical stage, Cytoredueti\'e surgery. Univariate p53 over-

residual disease after platinum-based chemo- expression (none versus all),
primary surgery, histology, therapy, non-platinum p = 0.0498. Multivariate p53

grade. age, race chemotherapy. radiation, overexpression, adjusting

intraperitoneal chronic for stage and size of residual
phosphate tumor burden, p = 0.16

Sul\ival, median survival

was 53.5 months.

No event rate was reported

Nop53 overexpression not

correlated with survival

NoSUl\ival of 31 cases Not reported Stage. histologic grade,

response to

primary therapy

Surgery,

cisplatin/doxorubicin/

cyclophosphamide

chemotherapy

NoSurvival, 93 deaths due

to ovarian cancer.

Median 122 months Stage. S-phase.

histologic I}pe and

grade. DNA ploidy.

age at diagnosis

Radical surgery, No correlation between p53 No
radiotherapy, immunostaining result and

chemotherapy the number of mutations by

PCR-SSCP. Positive p53

staining associated with serous

histologic t}1Je, S-phase. and

histologic grade.

Univariate and multivariate p53

overexpression associated with

survival p = 0.002. and

p = 0.008

No No
Surgery, platinum-based Positive p53 staining associated No

combination chemotherapy with grade. stage, residual

tumor. Overall survival was

associated with p53 overexpres-

sion, age, grade, state. serous

t}1Je, and MIBI

bcl-2. MIBI NoMean 46 months

that it is not necessary to understand the function of the fac-

tor in order to use it as a predictive factor.
that the factor is, at its minimum accuracy, a powerful predic-
tor for a subset of a clinical population or, at its minimum
accuracy, a modest predictor for a large segment of the
population. Independent means that the factor retains a sig-
nificant predictive value when other predictive factors are
added to it in a multivariate model. Useful means that the
predictive factor is clinically relevant; that it can affect patient
management and therefore outcome. Powerful predictors are
not always clinically useful because clinical utility also
requires an effective therapy, which may not be available.
There are non-clinical utilities, one of which can be termed a
"social" utility. The social utility of a factor is its ability to pro-
vide information to patients regarding their outcome even
when the outcome cannot be changed. It is important to note

IDENTIFICATION, REPLICATION, AND VALIDATION OF FACTORS

A putative predictive factor must go through three stages of
testing before it can be used clinically. The first stage is the
discovery and characterization of the factor. The factor must
be unambiguously identified and its predictive linkage to a

clinical outcome determined (usually using an appropriate
univariate statistical method). Important components of the
identification stage are the explicit definition of the factor,
the detailed description of the method used to detect it, and
the inclusion/exclusion criteria and collection methods for the
clinical population that is used to assess the factor.
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The second stage is replication. Once a factor has been iden-
tified it must be replicated using the original assay method
and independent researchers. Other assay methods that
are commonly Jlsed to detect this type of factor should
be employed by both the original researcher and by indepen-
dent researchers. The idea here is that the original finding
should be reproducible across assay methods and researchers
using the same defined patient population. Failure to repli-
cate previous results will affect the interpretation and use of
the prognostic factor. In addition, the accuracy method that is
used to compare the factor across assay methods and
researchers must be suitable for the comparison of two statis-
tical models.

INTRODUCTION TO COMBINING FACTORS It is rarely the case

that one factor is sufficiently predictive, i.e. that it is able to

predict the outcome of interest with 100% accuracy (until the

patient is very near the outcome). The usual strategy when

dealing with predictors, especially risk and prognostic factors,

is to combine several in a predictive model. The most useful

grouping of factors is one in which all the factors are power-

ful and predictively orthogonal to each other, i.e. they repre-

sent independent aspects of the disease process. If they rep-

resent aspects of the disease that are not independent then

their information will overlap and one will not add predictive

power when combined with the other factors. The statistical

method employed to combine the factors must be able to cap-

ture the complexity of the disease process that is represented

by the factors being combined, e.g. non-linearity and interac-

tions.

The third stage is validation. Validation addresses the issue of
the predictive power of the factor in other populations. The
factor should be assessed on a well defined independently col-
lected patient population (not the same population that was
used for identification and replication). The question being
addressed is whether the factor retains its predictive power.
In order for a factor to be clinically useful it must be assessed
by a method that can be performed in many different types
and levels of laboratories and it must be powerful enough to
overcome intra-observer, inter-observer and inter-institution-
al variance.

A predictive model is the result of using a statistical method
to relate one or more predictive factors to an outcome. For
example, the mathematical formula generated by the logistic
regression statistical method relates the predictive factors
(input variables), in terms of their B-coefficients, to a binary
disease outcome, e.g. recurrence, death, etc.

It should be noted that the predictive power of a factor is
always associated with the statistical method that was used to
capture its power and with the other factors included in the
model. Because a particular model may not be efficient at
capturing the power of the factors, and because not all the rel-
evant factor may be included in the model, any statement of a
factor's accuracy must include an explanation of why a spe-
cific statistical model was used and why certain factors were
included in the model.

It is a common practice to transform continuous factors into
discrete factors. For example, in ovarian cancer the number of
lymph nodes involved, which is a continuous factor, is trans-
formed into a binary category in the FIGOrrNM systems.
Transforming a continuous factor into a discrete factor
reduces the factor's predictive accuracy (1). If a factor must be
partitioned, the accuracy of the factor must be assessed on a
data set different from the one used to determine the optimal
partitioning of the factor (16). Validation in a multivariate
model with all the current, related factors is addressed in the
next section. Significant fmdings should be followed-up by a

prospective, multi-institution study. There is no need for a
control group in such a study.

METHODS FOR COMBINING FACTORS The primary descriptive

methods for combining factors in cancer are: bins, stages and
indexes (either as discrete endpoint or as Kaplan-Meier pro-
duct-limit models) (18). The main inferential methods for
combining factors are: decision trees, regression methods
including logistic and proportional hazards, and artificial
neural networks (19-20).There are two major validation problems related to prognos-

tic factors. The first is the time from diagnosis to the analysis
of outcomes (e.g. mortality). The longer this interval, the
longer the prediction time interval. To provide, for example,
ten year survival predictions, a patient population must be fol-
lowed for ten years. The ten-year information is used to assess
prognostic factor predictive accuracy and to provide ten-year
outcome predictions to future patients. The second is the
accrual of a sufficient number of outcomes so that the assess-
ment of the factor is statistically reliable. Reliable means that
a similar result would be observed if the analysis were repeat-
ed. One solution to these problems is the implementation of
a specimen bank (17).

Bins are the result of the mutually exclusive and exhaustive
partitioning of discrete variables. Each combination of vari-
able values is a bin and every patient is placed in the bin cor-
responding to their variable value combination. An example
is the TNM classification of ovarian cancer. Tumor location

(TIa, TIb, TIc, T2a, T2b, T2c, T3a, T3b, T3c), regional lymph
node involvement (NO, Nl) and existence of metastases (MO,

MI) produce thirty-six bins.

For discrete variables, if there are enough patients in each
bin, it can be shown that the frequency of the outcome in the
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Any bin, group of bins, stages or scores can be contrasted, in
terms of outcome, with other bins, group of bins, stages or
scores at the end of a single time interval or across a series of

event time intervals. (In other words, comparing predictive
factors.) Both the single time interval and the event interval
approaches usually deal with censoring by dropping censored
cases at the time interval in which they are censored. The

most common descriptive approach for contrasting predictive
factors across a series of event time intervals is the Kaplan-
Meier product-limit method (inferential methods that can
accommodate continuous variables and that usually require a
proportional hazards assumption, will be discussed later with

regression methods). A Kaplan-Meier plot should always
include confidence intervals around each line. A significant
difference in a Kaplan-Meier comparison is usually assessed
by a log-rank test (which assumes proportional hazards). It is

important to note that there is currently no widely accepted
method for comparing the accuracy of two Kaplan-Meier
comparisons based on different stratifications of the same
variables. The use of the log-rank p-value to select one strati-
fication over another is incorrect because the log-rank test
determines whether a factor stratification is likely to have
occurred by chance. Extreme stratifications may result in a

smaller p-value, but it may also reduce predictive accuracy

over the entire population.

population within each bin is the best predictor of the true
outcome. In other words, no prediction model can be more
accurate than the bin model if the variables are discrete and
the population very large. Problems with bin models include:
1. continuous variables must be parsed into discrete variables,
almost always resulting in a loss of predictive information and
therefore a loss of accuracy. 2. As the number of discrete vari-
ables increase the number of bins increase exponentially. For
example, if we wish to add 3 grades to the TNM of ovarian
cancer, then the number of bins will increase to 108. In order
to maintain accuracy there must be a corresponding expo-
nential increase in the size of the patient population to fill
each bin. 3. The proliferation of bins reduces the ability to
understand the phenomena. Since the main reason of creat-
ing a bin model is usually for ease of understanding and ease
of use, bin models are rarely used in situations where there

are more than two or three predictive factors.

A partial solution to some of the problems of a bin model is a

stage model. A stage model is combining of bins into super-
bins. The justification for grouping is the assumption that the
factors selected are indexes of the "stages" of the disease
process and that the combined bins represent a real stage in
the disease process. For example, in breast cancer, the TNM
staging system combines forty TNM classification bins into six
super-bins (stages I, IIA, liB, IlIA IIIB, IV) based on
decreasing survival, and these super-bins are termed as the

TNM staging system.

Decision trees split predictive factors to maximize predictive
power using a loss function such as the log-likelihood and a
greedy search algorithm. The most well known decision tree

approach is the Classification and Regression Trees (CART)
recursive partitioning method (21). Empirically, we have
never found decision trees to be the most accurate statistical
method, when compared to regression methods. Its problems

include the selection of the correct loss function, difficulty
dealing with continuous variables, and overfitting when
searching for the best predictors especially when there are

more than two or three splits.

A small set of stages have the potential to maintain explanato-
ry simplicity and ease of use. Problems with stage models

include: 1. the combining of bins into super-bins/stages
reduces predictive accuracy. 2. Stage systems do not overcome
the exponential increase in bins and in patients associated with
adding a variable to the staging system, they just delay the
problem at the cost of predictive accuracy. If the stages are
held constant as variables (and their associated bins) are
added the staging system, the potential improvement in accu-
racy associated with the additional bins will be small to non-
existent. But, if the stages are expanded to accommodate addi-
tional bins, the system loses its ease of understanding and use-

fulness. Thus, attempts to improve predictive accuracy by
adding variables to a bin/stage model are rarely successful. 3.
The problems of parsing continuous variables, with as the

resulting loss in predictive accuracy, remains.

Univariate regression methods are not appropriate for decid-
ing whether a variable is or is not a predictive factor. These
methods should not be used to assert that a factor is predic-
tive because a factor must be assessed in the context of the

other known factors. Further, some variables are only predic-
tive when interacting with other factors (for example, some

molecular genetic factors).

Logistic regression is the cumulative probability of a binary
event occurring by a specific time. It uses a maximum likeli-
hood loss function and a greedy search technique. It is a very
efficient method for problems that have a binary outcome
(e.g. recurrence, survival). Its limitation is that it must span a
single time interval and does not distinguish when the event

occurred in the interval. Also, in order to handle censoring

Indexes associate numerical scores (usually based on a
bounded, linear scale) with bins or groups of bins. The scores
are parsed into discrete ranges, and each range is associated
with a disease stage (usually a severity of illness system).
Indexes offer some flexibility in the grouping of bins, but at
the cost of further degradation in predictive accuracy. The
simplest example of an index is the Apgar score.
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butional assumptions, and with the appropriate method to
avoid overfitting (i.e. loss of generalization by fitting the pat-
terns to the test data too precisely), artificial neural networks
are usually at least as accurate as classical statistical models
and, depending on the complexity of the phenomena, can be
much more accurate. Artificial neural networks have, for
example, been shown to be more accurate than logistic
regression, CART (pruned or shrunk) and principal compo-
nents analysis at predicting five-year breast cancer specific
survival (29).

one must create a multi-time interval logistic regression
model and for each time drop the cases that are censored in
that interval.

"Proportional hazards" methods include the Weibull, expo-
nential and Cox. The Cox proportional hazards regression
method (22) is the most commonly used. All three methods
assume that the hazard of each patient is proportional to the
hazards of all the other patients and that the degree of each
patient's hazard is related to their relative risk. The Cox
model cannot create empirical survival curves. For survival
curves, a baseline hazard must be introduced, e.g. Cox-Bres-
low estimates (23). Some researchers incorrectly believe that
the Cox is the only regression method that can deal with cen-
soring. A multi-interval logistic regression can deal with miss-
ing data. In cancer, the proportional hazards assumption is
often violated. Therefore, anyone using a Cox model must
demonstrate that proportional hazards holds for the factors
and outcome.

In medical research, the most commonly used artificial neur-
al networks (ANN) are multi-layer perceptrons that use back-
propagation training. Backpropagation consists of fitting the
parameters (weights) of the model by a criterion function,
usually squared error or maximum likelihood, using a gradi-
ent optimization method. In backpropagation artificial neu-
ral networks, the error (the difference between the predicted
outcome and the true outcome) is propagated back from the
output to the connection weights in order to adjust the
weights in the direction of minimum error. (For a more
detailed description of artificial neural networks see refer-
ences 39-40). The usual artificial neural network employed in
medical research is composed of three interconnected layers
of nodes: an input layer with each input node corresponding
to a patient variable, a hidden layer and an output layer. All
nodes after the input layer sum the inputs to them and use a
transfer function (also known as an activation function) to
send the information to the adjacent layer nodes. The trans-
fer function is usually a sigmoid function such as the logistic.
The connections between the nodes have adjustable weights
that specify the extent to which the output of one node will be
reflected in the activity of the adjacent layer nodes. These
weights, along with the connections among the nodes deter-
mine the output of the network. The output of the network is

a probability of the event for each patient.

Molecular genetic factors, for example, p53, c-erbB-2 (HER-
2/neu), pRB, exhibit the properties of complex systems, they
are nonlinear and are inter-actional, i.e. they act non-mono-
tonically and in concert with other molecular genetic factors
(24-27). Thus, capturing the factors as part of a complex sys-
tem is critical to accurate prediction of the behavior of the
system. Artificial neural networks are capable of capturing

complex systems (28).

The idea that learning can be viewed as the modification of
information by repetitively passing it through processing
nodes originated in the late 1940's as a way to model the
physiology of neuronal processes (29). The operationalization
of this idea was called an artificial neural network. Gradually
it became apparent that this information theoretic approach
to learning was very powerful and very general; it was useful
in, and applicable to, many learning situations. Since statistics
can be viewed as learning from the data, it is not unexpected
that this approach would be mathematically proved and oper-
ationalized within the domain of statistics.

COMPARING STATISTICAL MODELS: MEASURING ACCURACY In
order to assess and compare models, it is necessary to distin-
guish between significance, accuracy and importance. Signi-
ficant is the fact, that it is unlikely that either a trained
statistical method (i.e. a statistical model) or a predictive
factor's predictions are due to chance (e.g. the chi-square
test). Significance is not necessarily accuracy. Accuracy is the
association between the model's individual patient outcome
predictions (the predicted outcome) and the individual out-
comes of the test population (the true outcome). The impor-
tance of a factor or a model is based on whether the model or
factor possesses sufficient accuracy to be useful in answering
a particular clinical question. Finally, the assessment of the
model's or factor's significance, accuracy and importance
must be based on test data set results, not on training data set

results.

Artificial neural networks are universal approximators. It has
been shown that any real, continuous function can be approx-
imated to any degree of precision by a three-layer network
with x in the input layer (patient variables), a hidden layer
with sigmodal transfer functions, and one layer of output
units, as long as the hidden layer can be arbitrarily large

(30-31).

Artificial neural networks, as a class of nonlinear regression
and discrimination statistical methods, are of proven value in

many areas of medicine (32-39). They do not require prior
information regarding the phenomenon, they make no distri-
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py-specific, post-therapy). 4. Outcome selected, e.g. five-year
breast cancer-specific survival, (it should not be "lifetime"
except in special situations). It should be a specific time inter-
val. 5. Time of assay (e.g. at discovery, prior to therapy, after
therapy). 6. Specific laboratory method used to assess the fac-

tor and why that method was selected (e.g. immunohisto-
chemistry). 7. If the prognostic factor is stratified, the specif-
ic range/cut-point/etc. of the factor. If the variable value is
based on rater judgment, then Cohen's kappa should be

reported. 8. Relevant characteristics of the data set, including:
data set size, the number of events, and whether the therapy
was randomized. 9. The numerical estimate and confidence
interval of the finding. 10. The level of significance, for exam-
ple, p <0.05 for one test of the data. If multiple tests of the
data are performed, an adjustment may be required. 11. The

type of multivariate statistical method (e.g. logistic regression,

Cox) used and tests for any assumptions (for example,
proportional hazards). 12. If all the other relevant prognostic
factors were not included in the multivariate model, which
were left out. 13. Specific type of therapy, e.g. surgery, chemo-
therapy and radiation therapy, and how it was admi-nistered.
14. The method of accuracy assessment, i.e. area under the
receiver operating characteristic, R2, etc., and why was it
used. 15) The accuracy estimates of the multivariate model
including either standard errors or confidence intervals for
the estimates (e.g. Az = 0.75, CI = 0.50 - 1.0).

There are several approaches to assessing the accuracy of a
multivariate model and for comparing multivariate models
(e.g. Goodman and Kruskall's Gamma, Kendall's Tau). The
best method currently in use is the area under the receiver
operating characteristic curve. The area under the receiver
operating characteristic curve (Az) is the best currently avail-
able measure of predictive accuracy (41). It can be used to
assess and compare the adequacy of statistical models. Az can
be directly calculated by Somer's D (42) or it can be approxi-
mated by its trapezoidal area (43). The area under the curve
is a non-parametric measure of discrimination. The receiver
operating characteristic area is independent of both the prior
probability of each outcome and the threshold cutoff for cat-
egorization. Its computation requires only that the prediction
method produce an ordinal-scaled relative predictive score.
In terms of mortality, the receiver operating characteristic
area estimates the probability that the prediction method will
assign a higher mortality score to the patient who died, than
to the patient who lived. The receiver operating characteristic
area varies from zero to one. When the predictions are unre-

lated to survival, the score is 0.5, indicating chance accuracy.
The farther the score is from 0.5, the better on average, the
prediction method is at predicting which of two patients with
different outcomes will be alive. Significant differences in the
receiver operating characteristic areas between two models

can be tested following Hanley and McNeil (44), by calculating
their asymptotic variances, or calculating the empirical vari-

ance using bootstrap method (45). In summary, evaluating predictive factors is a complex and
difficult process. But it must be done if we are to have true
findings that can be used clinically.UNRESOLVED ISSUES There are several important unresolved

issues related to the use of prognostic factors. The first is
related to determining the natural history of the disease when
effective therapies exist. The problem here is that all therapy-
specific factors are compared to the natural history of the
disease. But if the natural history is not known, this compari-
son cannot be made. The second unresolved issue is how to
assess new treatments. Specimen banks cannot overcome the
need to collect outcome data over long periods of time on
large patient populations for new therapies. Perhaps model-
ing the phenomena and the effect of a new treatment by

simulation may be helpful in the future.
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