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The human genome is a complex system characterized by gene interactions and
nonlinear behaviors. Complex systems cannot be viewed as the aggregate of their
isolated pieces but must be studied as an integrated whole. Microarray technologies
offer the opportunity to see the entire biological system as it existed at one moment
in time. It is tempting to try to analyze the entire microarray at once to immediately
discover the pattern being sought, for example, the pattern of a breast cancer.
However, such an analysis would be a mistake because microarra)!s provide mas-
sively parallel infonnation, the analysis of which is a nondeterministic polynomial
time {NP)-hard problem. Current statistical methods are not sufficiently powerful to
solve this NP-hard problem. The best approach to microarray analysis is to begin
with a small number of the elements in the microarray known to be a pattern and ask
questions of the other elements in the microarray; i.e., perfonn instantaneous sci-
entific experiments regarding whether each of the other elements in the microarray
are related to the known pattern.
Key words: predictive medicine, microarray, principal components analysis, clus-
tering, self-organizing maps, artificial neural networks, pattern discovery, pattern
recognition, nondetenninistic polynomial time-hard problem.

The ultimate goal of disease-related proteo-
genomic (the term "proteogenomic" was coined by
Cooper [I]) research is a complete description of
the unfolding of a specific disease process from its
time of origin (Fig. 1). At a particular moment in
the disease's biological development, this descrip-
tion includes a representation of all the necessary
and sufficient genes (the genome), systematic link-
age of the genomic representation to a representa-
tion of the transcription of these genes (transcrip-
tome), and systematic linkage of the transcriptome
to a representation of the resulting proteins (pro-
teome). For a complete understanding of the disease

process, each description of a time in the disease
process must then be linked to the other descrip-
tions at successive moments in time.

As this model is clinically realized, it will be-
come possible to target interventions at specific
times and etiologic locations in the disease process.
It will also be possible to accurately predict both the
direction and magnitude of the changes that will
occur in response to the intervention. Fo! example,
it will allow one to know the patient's stage of the
disease process and allow the creation of a therapy
that acts at a particular time and place in the disease

process.
When properly analyzed, large-scale microarrays

have the potential to provide the data necessary to
determine the disease-specific and patient-specific
relationships of genome to transcriptome to prote-
orne. Specifically, microarrays will be used to ex-
plore the genetic mechanisms that give rise to a
disease. In addition, they will be used, without
knowledge of their role in the disease process, as
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Fig. 1. Unfolding of the disease process. Each set of three microarrays represents the disease process at that point in time in terms

of the changes in the genome, transcriptome, and proteome.

amples of massively parallel information in science;
thus, little is known about its analysis.
. Magnetic resonance imaging might be relevant to

microarrays because it generates large amounts of
information in parallel in an image-processing para-
digm. However, its task is made orders of magni-
tude simpler by image processing with a preexisting
natural distance metric, i.e., spatial proximity. In the
microarray domain, this is similar to genes being
arranged a priori on the chip in the natural order of
their decreasing relatedness to a particular biologi-
cal function.

It is reasonable to ask why we should deal with
the problems inherent in massively parallel infor-
mation. Simply stated, massively parallel informa-
tion is essential to the understanding of complex
diseases. Because microarrays represent informa-
tion in a massively parallel fashion, they can si-
multaneously present multiple components of a
complex system. Before the availability and use of
microarrays, molecular genetic research proceeded
in a stepwise fashion from one biological compo-
nent to the next. Although conditional analysis may
be useful for simple systems, it is not a viable ap-
proach when dealing with complex (nonlinear, in-

teractional), tightly integrated, dynamic systems.
Such systems must be examined and understood as
a whole rather than as a series of pieces.

Three characteristics of complex dynamic sys-
tems are: (1) they possess alternative pathways, i.e.,
there are different ways of accomplishing the same
result; (2) each component has multiple functions,
i.e., different activities that it can perform; and (3)
pathways and functions are determined by the ac-
tivities of other components of the system. This
type of system cannot be successfully studied in
pieces because when the study is completed, the
pieces will not fit together; each piece has a differ-

predictive factors. Depending on the type of predic-
tive factor, it will allow the determination of (1) the
risk for disease, (2) existence of disease, and (3)
prognosis without and with treatment [2]. On a
practical level, pharrnacogenomics is the search for
the genetic factors that predict the patient's re-
sponse to a specific treatment, or the discovery of
genetic patterns that are patient and therapy specific
(a patient's profile for that therapy). These patterns
will predict whether an individual patient with a
particular disease will respond to a specific treat-
ment and whether that treatment will cause toxic
side effects in the patient [2].

This report addresses some issues that arise when
analyzing information generated by microarray
technologies. Although the genetics of cancer is the
focus of this report, the concepts are applicable to
most disease-related proteogenomic analyses.

Information Theoretic
Perspective and Massively

Parallel Information

A large-scale microarray containing as few as
several hundred genes to as many as one hundred
thousand genes creates an analog representation
of the average activity level of a gene across a huge
number of cells for a large number of genes at a
biological moment in time for a particular patient.
The output of a microarray contains signal, the true
activity level of each gene, and noise, the spurious
and background activity level.

Microarrays are a source of massively parallel
information. They are able to generate large
amounts of information in a nonserial manner; the
information is not the result of a conditional se-
quence of investigative events. There are few ex-
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Simplifying the Problem to Make
It More Tractable

ent context (environment). In other words, cancer is
not like a jigsaw puzzle.

Pattern Discovery

We are not interested in discovering single genes;
rather, we are interested in patterns because patterns
have the greatest functional significance. Pattern
can be operationally defined as a set of elements
that occurs in a manner that is systematic and mean-
ingful for the task. In the context of microarrays,
there are two types of pattern tasks. Pattern discov-
ery is the detection, or more correctly, the learning
of a new pattern from the data. Pattern recognition
is the recognition of a pattern when it recurs, i.e.,
the ability to identify a pattern as an instance of a
known pattern. Pattern discovery and recognition
are ancient problems; their literature extends back
to the ancient Greek philosophers. Currently, they
are a central problem in the psychology of human
perception. Pattern r~cognition is the less challeng-
ing problem because af~r a pattern is known, tem-
plates and other approl!ches Gan be easily applied.
The remainder of this report is devoted to pattern
discovery.

Computationally Intractable
Problems

Initially, it must be assumed that every data ele-
ment in a massively parallel information represen-
tation has the potential to be meaningful, i.e., to be
a necessary but not sufficient part of the pattern.
The reason for this assumption is that if it were 'not
possible for each data element to be meaningful,
then massively parallel information would not be
necessary. It is precisely because any element could
be important that we are interested in and willing to
deal with the problems of massively parallel infor-
mation. Typically, microarray data contain thou-
sands of elements per patient and few patients [3].
Microarrays present an analytic problem that is
nondeterministic polynomial time (NP)-hard. 'NP
represents a class of computational tasks for which
a potential solution can be checked efficiently for
correctness, yet finding such a solution appears to
require exponential time in the worst case. In other
words, they are currently computationally intrac-
tahle

The analysis of large-scale microarray-generated
information to find true patterns is intractable when
(1) every gene is considered to be a continuous
variable and there are (2) thousands of genes, (3)
interpatient variation, (4) disease variation (stage,
subtype), (5) error in the microarray technology,
and (6) only a few exemplars of the pattern, i.e.,
only a few individuals express the pattern in the
data.

The analysis of large-scale microarrays can be
simplified by thresholding each gene's signal to
create binary variables (which consequently have
reduced information available), minimizing disease
and interpatient variation, and increasing the num-
ber of patients. However, even in this situation, be-
cause of splice variants and other issues, there are
more genes than one would like to analyze. In the
simplest of conditions, in which the genes are con-
sidered binary variables, there are 2" possible pat-
terns (where n is the number of genes and their
variants). However, 2" is still a very large number.
Each gene is considered a dimension in the analysis,
and all the patients' values for that gene define the
boundaries and shape of the dimension. Thi~is very
high-dimensional space that has its own character-
istics, for example, the curse of multidimensional-
ity. High-dimension space is extremely large, and
each patient's data move to the edges of the dimen-
sions.

A potentially useful 'heuristic f9r dimension re-
duction is differential expression, which uses a sub-
traction strategy [4-8]. This approach u_sually in-
volves subtracting normal gene expression from the
gene expression of cancer cells to identify relatively
overexpressed and underexpressed genes. This heu-
ristic should not be confused with pattern discovery
algorithms.

Statistical Methods
for Pattern Discovery

The difficulty inherent in analyzing microarrays
has been discussed. We now explore the ability of
the current statistical methods designed for rela-
tively simple problems to' deal with micro array data.
To clarify our nomenclature, data mining used in
the context of microarravs is almost always statis-
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tical analysis. To date, almost all published micro-
array analyses have been based, either in part or
completely, on traditional statistical methods. None
has used a completely new method specifically de-
signed for microarray analysis. Table 1 lists some of
the published statistical analysis methods.

There are two categories of pattern discovery
methods: unsupervised and supervised learning al-
gorithms. In unsupervised learning,. the final error
metrics are not available during training; thus, the
algorithm is not guided by an outcome. This ap-
proach has been called blind separation because
there is no dependent variable. The task is to reduce
the data complexity with minimal loss in precision
by discarding noise and showing basic structures.
The algorithms accomplish this by optimizing a
cost function that preserves the original data as
completely as possible while simultaneously favor-
ing prototypes with minimal complexity. Unsuper-
vised learning algorithms tend to focus on discov-
ering linear relationships or maximizing signal to
noise ratios and usually assume Gaussian distribu-
tions. Examples of unsupervised learning algo-
rithms include principal components analysis
(PCA), self-organizing maps (SaM), and some
clustering algorithms. Most unsupervised learning
algorithms can be used for dimension reduction, as
well as for pattern discovery.

principal components, are defined as linear func-
tions of the original variables. If the first few prin-
cipal components account for a large percentage of
the variance, for example, greater than 70%, they
can be used to both simplify subsequent analyses
and display and summarize the data in a parsimo-
nious manner.

PCA was used in a controlled experiment that
randomized mice with cancer to either be adminis-
tered or not be administered tamoxifen and identi-
fied genes with altered expression caused by
tamoxifen [6]. This was the use of PCA in a sub-
traction task for dimension reduction rather than for
pattern discovery. The primary problem with PCA
for pattern discovery is that it does not consider the
complex character of genes. Microarrays are being
used because every gene is potentially informative,
and many genes are nonlinearly and interactionally
associated. Thus, the assumption that most genes
are linear and noninteractional and possess uniform
variance oversimplifies the problem and results in
an ill-fitting solution. This technique of combining
genes into large groups based 'on an overly simplis-
tic algorithm provides little information about the
disease process. In addition, PCA is sensitive to
data transformations and outliers. Finally, one must
consider the need to decorrelate the higher-order
moments in the input. This can be accomplished by
a generalization of PCA, namely, independent com-
ponent analysis [9]. In other words, for complex
phenomena, PCA is unable to separate signal from
noise [10].

PCA

PCA extracts statistically independent features
by finding a factorial representation of a signal dis-
tribution for linear-correlated and Gaussian-
distributed signals. PCA transforms the original
variables into new ones that are uncorrelated and
account for decreasing proportions of the variance
in the data. The aim of this method is to reduce the
dimensionality of the data. The new variables, the

SaM Algorithms

SOMs were introduced by Kohonen [11] in 1984
as a tool for visualizing data. The SaM method has
recently been proposed for microarray analysis [12-
14]. In the SaM approach, the entire training data

Table 1. Statistical Methods for Analyzing Microarrays

Problems Associated With MethodsLearning Methods

Oversimplifies the pattern; causes the loss of all but the most obvious patterns
Shown to perform poorly when there are many clusters
Relies on distance measures, but different measures produce different r~sults

Unsupervised
Principal components analysis
Self -organizing maps
Clustering

Supervised
Support vector machines
Classification and regression trees
Linear discriminant analysis

Not tested on a difficult problem
Quickly runs out of data; no internally valid method for branching
Assumes linearity among the variables, which is almost never true
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set is used in each training iteration because batch
processing is not affected by presentation order and
is faster [15]. The batch SaM algorithm consists of
two steps. First, the training data are partitioned in
terms of their locations. Second, the units are up-
dated by taking weighted centers of the data falling
into the certain regions, with the weighting function
given by the neighborhood. The neighborhood
width is decreased, and steps 1 and 2 are repeated.
The second step can be considered as a smoothing
procedure (like a weighted average) [16]. A prob-
lem with this approach is that it does not optimize
an objective function, and there may not be an ob-
jective function for the SaM algorithm [17]. Also,
in some situations, neighborhood preservation is
not guaranteed by the SaM procedure.

In a series of multivariate normal clustering prob-
lems, SaM was shown to perform significantly
worse in recovering the structure of clusters and
preserving the topology compared with more tradi-
tional methods [18]. One reason for the poor per-
formance of SOMs is that the estimation error of its
smoothers increases for a fixed sample size as the
dimensionality increases [16]. In other words, a
characteristic of SOMs is that their error increases
with large numbers of clusters in the data [19].

Clustering Algorithms

learning techniques rely on measures of similarity,
i.e., distance measures that operate on feature vec-
tors, usually Euclidean distance. Some of the prob-
lems with these metrics are: they are generic across
problem domains, they are too weak to capture
complex phenomena, and they present the false ap-
pearance of utility by capturing easily discovered
relationships. The unsophisticated nature of cluster-
ing is exemplified by the most commonly used dis-
tance metric, namely, the Euclidean distance calcu-
lation, as follows:

For two observations:
x' = [XI' . . ., xn] and y' = [YI' . . ., Yn]

dxy = ~~
A major problem with clustering algorithms is that
transformation invariance does not hold when ge-
neric distance metrics are used. In other words, dif-
ferent generic distance measures (Euclidean vs city
block, etc) produce different cluster results. An ad-
ditional issue is the lack of independence among
gene locations and the resulting correlations. Also,
clustering algorithms that minimize some function
of scatter matrices do not have convergence proofs
[26]. Finally, overlapping class structures from
multiple causes are not easily accommodated by
hierarchical clustering methods.

It would be better if there were domain-specific
distance measures. However, this idea does not
solve the problem; rather, it shifts the problem to
how to select the optimal domain-specific distance
metric. Creating a domain-specific distance mea-
sure can be dangerous because an incorrect metric
will almost certainly result in biased and misleading
results. In addition, it is very difficult to create a
proper mathematical proof for a domain-specific
metric.

Supervised Learning

In supervised learning tasks, the final error met-
rics are available during training; therefore, the al-
gorithm can directly reduce the number of misclas-
sifications in the training data set. It is usually a
good strategy to try to turn an unsupervised learning
problem into a supervised learning problem because
more information can be brought to bear on the
solution.

Brown et al. [27] used prior knowledge of gene
function to identify unknown genes of similar func-

Eisen et al. [20] and others [21-25] recently ap-
plied traditional hierarchical clustering methods to
microarray analysis. This approach produces a hi-
erarchical dendrogram in which genes with similar
expression patterns, according to the standard cor-
relation coefficient metric, are adjacent, and adja-
cency is interpreted as functional similarity. In this
approach, a local criterion is used to build clusters
by using the local structure of the data. The object
of cluster analysis is to determine a classification or
taxonomic scheme that accounts for the variance
among subjects. The main issues with generic clus-
tering algorithms are: (I) many different types of
variance participate in the overall variance, and
each variance component participates to a different
degree depending on the variables, the data set, and
the task; and (2) many equally plausible clustering
models account for the variance, and no algorithm
exists to allow us to separate the correct model from
all the incorrect models.

Clustering, SOMs, and related unsupervised
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Pattern Validationtion from expression data using a support vector
machine (SVM) classification approach. An SVM
performs mapping in high-dimensional space. In
the separable case, the SVM algorithm constructs
the separating hyperplane for which the margin be-
tween the positive and negative examples in space
is maximized. It uses a function that can be viewed
as the measure of similarity between genes. It is
known that SVMs give good results on pattern rec-
ognition problems although they do not incorporate
problem domain knowledge, but they can be very
slow to converge [28]. Brown et al. [27] found that
SVM performed more accurately than classification
and decision trees (classification and regression
trees), Parzen windows, and Fisher's linear dis-
criminant. However, these three algorithms are eas-
ily defeated. The problem with supervised learning
algorithms is that learning is best achieved when
there are relatively few variables and many in-
stances. Unfortunately, microarray data sets usually
contain thousands of variables (genes) and only a
few instances (patients) of each variable.

After a putative pattern is discovered, it must be
validated. A common validation approach is the ro-
bust heuristic. This approach begins with the inves-
tigators examining a microarray and identifying a
large number of interesting patterns. The investiga-
tors then turn to a second microarray (second pa-
tient) with the same disease and the same genes on
the microarray. They look for the same or similar
patterns in the second microarray that they found in
the original microarray. Usually, they find several
of the same patterns detected in the original micro-
array. This heuristic approach is continued for sev-
eral more microarrays, finding fewer and fewer of
the same patterns. When this process is completed,
one or more of the original patterns will have oc-
curred in all the microarrays. The claim is made that
because a pattern occurred in all the microarrays,
the pattern is robust. In other words, the claim is
that it is unlikely that the observed pattern occurred
in all the microarrays by chance.

Unfortunately, one cannot make such a claim us-
ing this approach. In a large microarray, many pat-
terns occur by chance. If each pattern is a small
number of genes, then by chance, some of the pat-
terns will occur in several microarrays. This reality
is obscured by the elimination of patterns as addi-
tional microarrays are sequentially searched. The
correct approach is to hypothesize a putative pattern
before seeing the data and test it on a large number
of independently derived microarrays using very
stringent criteria for testing whether the pattern oc-
curred by chance. The problem with testing the pat-
tern is that the error (variance) for each gene and
each microarray is not known; thus, it is difficult to
determine whether the observed similarity or differ-
ence between microarrays could have occurred by
chance. Currently, it is very difficult to perform
meaningful significance testing of microarrays.

Sources of Error in the Analysis
of Microarray Data

The following sources of error exist in microar-
ray data. (1) The microarray technology itself; low
levels of a messenger RNA are not generally de-
tected on a microarray. Microarrays require large
numbers of homogeneous cells to detect low-
abundance messages. This can be a problem for
screening applications and the early detection of
disease. Such solutions as RT -PCR can create new
problems. In addition, in some cases, the results of
different microarray technologies cannot be com-
bined because of differences in baseline conditions
and the fact that the output of a microarray can
be relative rather than absolute, even when the re-
sults are numeric. (2) The patients; the composi-
tion of the specimen that is used, including the ratio
of normal to malignant cells; the patient's stage of
disease process at discovery; and individual and
population genetic variation. (3) The disease; there
may be subtypes of a cancer site (e.g., within breast
cancer) and different pathways that result in the
final common pathway of clinical cancer. (4) The
inefficiency of the statistical method in capturing
thp n~ttp.m. (,,) Random error.

Promising Areas of Investigation

There are several interesting approaches to mi-
croarray-based pattern discovery. Stochastic search
methods may be useful for finding putative gene
patterns [29,30]. These methods attempt to identify
possible subsets of explanatory variables that can
then be evaluated. Other approaches currently being
assessed for their efficiency in dealing with mas-
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sively parallel data include a combinatorial multi-
variate method [31] and mixture models [32-34].
The combinatorial method proposed by Califano
[31] is a supervised learning task that improves as
the number of cases increases. Finite mixture mod-
els assume that the data arise from a mixture of
several unknown heterogeneous populations. Titter-
ington et al. [35] note that finite mixture distribu-
tions have been used as models since the work of
Newcomb [36] in 1886 and Pearson [37] in 1894.
Mixture models can be used for unsupervised and
learning tasks. Many estimation methods can be
applied to finite mixture problems, including the
method of moments, maximum likelihood, mini-
mum chi-square, least-squares, and Bayesian ap-
proaches [35,38-40]. An important issue in the di-
rect application of mixture models is how to
determine the number of components and their dis-
tributions.

known gene relationship expressed in the microar-
ray. In addition, we can order the genes on the array
in a manner we believe to be consistent with this
true relationship.

Before microarrays, we would have had to go to
our laboratory and, after several months of bench
research, come to some conclusion regarding the
relationship of that gene to the known gene pattern.
With the microarray, we can perform an instant
experiment by examining the expression of the gene
of interest on many chips (patients) in relation to the
known gene relationship also expressed on those
chips. Microarrays allow us to immediately test our
experimental hypotheses in the context of the other
relevant genes. Thus, the more genes in the array,
the better. The optimal microarray presents the ex-
pression of all the genes in the human genome.

Disease Modeling
and Simulation

Strong Claim

Given the cun-ent state-of-the-art and the limited
number of available microarrays, traditional statis-
tical methods applied to the entire microan-ay are
capable of finding only the grossest of patterns,
those unlikely to lead to pharmacogenomic targets.
In addition, there is cun-ently no method to verify
that a pattern found in a top-down analysis of a
large microan-ay is true and not caused by chance.

Solutions

Four areas require improvement: (1) refining the
microarray technology, (2) minimizing the patient
and disease variance through careful data acquisi-
tion and sample preparation, (3) acquiring more
cases, and (4) improving the statistical pattern de-
tection algorithms. However, improvements in
these areas will not solve the NP-hard problem or
deal with our inability to determine whether the
patterns we discover by top-down analysis are true.

The problem can be reformulated to be compu-
tationally tractable and statistically accessible. We
begin with a known genetic pattern, i.e., a known
gene expression relationship, and add genes. Using
artificial neural networks and mixture models, we
perform hypothesis-driven experiments by asking
whether a gene on the microarray is related to the

Fully representing a disease process at the prote-
ogenomic level, even with the use of microarray
tools, will require many years of rigorous research.
Before a complete description of a disease, we will
want to make use of the data we have acquired with
our new powerful molecular genetic tools, i.e., use
incomplete information to benefit patients. To use
fragmentary proteogenomic information for phar-
macogenomic ends, we need to create mathematical
models of the disease process. We will then be in a
position to perform simulation studies to fill in what
we do not know. Modeling allows us to extend our
knowledge beyond the data and provides reasonable
estimates of the phenomena, which in turn allow us
to identify therapy targets. We can use the model to
integrate known disease components and simulate
the disease process.

The accuracy of the simulation depends on: (1)
the known components of the disease process (the
more we know, the better the model), (2) the accu-
racy of our knowledge (the more correct the data,
the better the model), and (3) the adequacy of the
mathematical method used to model and simulate
the disease. The adequacy of the model rests on its
assumptions and its ability to efficiently represent
the disease (i.e., to fit the disease). Two additional
benefits of modeling and simulation are that (I) it
allows the assessment of the correctness of the data
and the methods by experimentally testing the mod-
el's predictions [41], and (2) it allows assessment of
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the correctness of new information by determining
how well the information fits in our disease model.
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