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To test the proposed system, we implemented prototypes
of some atomic microservices such as color deconvolution
that can be used for staining separation and quantification in
both PGR and ER image analysis. The result of the analysis
classifies each case as “negative”, “positive”, or “suspect”.
The cases classified as “suspect” are then further analyzed by
experts with a possible software support from other services.
For example, the analysis could be refined using other atomic
services to identify the tumor area and to evaluate positive
cells only in the tissue classified as tumour.

Discussion

The proposed architecture, although preliminary, seems to
provide a relatively simple approach to generic digital slide
analysis services in a distributed environment, taking into
account the issues coming from the large size of the involved
files. Specific security issues have not yet been examined,
although SOA security has been abundantly investigated
(e.g.,¥) and apparently provides a sensible solution for security
of health records.”

However, to describe and retrieve image analysis microservices
according to the theoretical model of SOA, sufficiently abstract
and shared terms should be adopted, that is, an ontology of
operations, of slide contents at different levels (subcellular,
cellular, tissue, organ...) and of diseases is needed, like
proposed by the MICO project.['”

The microservices are currently being integrated in the O3IMS
PACS in two ways, to be considered representative of two
image analysis modalities:

- Pull modality: the pathologist, while viewing the slide
through a workstation, decides to carry out some automated
analysis, and thus invokes a service from the graphical
interface;

- Push modality: after digitization of a slide, the PACS may
autonomously invoke some analysis on it, basing on available
metadata. This way, when the pathologist will examine the
slide, results are already available. Furthermore, some analysis
could screen slides to avoid the pathologist the examination
of obvious ones (i.e., frankly negative IHC results).

More microservices implemented and integrated within the
PACS imply a higher possibility of analysis using either the
microservices directly or in combination for a deeper analysis
and automatization. The scalable architecture allows a high
flexibility in digital slides image analysis, potentially covering
a wide number of quantitative analysis over different types of
stained images. The main advantage of such architecture is
that many different analyses can be performed over potentially
heterogeneous data with a limited computational load of the
local machine as well as of the communication system.

The system could be updated with the implementation and
integration of new atomic microservices as well as their
combinations (even with existing ones) to fulfill the needs for
image analysis of the clinicians.

[Downloaded free from http://www.jpathinformatics.org on Monday, January 6, 2020, IP: 71.166.185.254]

http://www.jpathinformatics.org
Acknowledgments

The work has been partially funded by the project HEaD —
Higher Education and Development - FP1619942003 (Region
Friuli — Venezia Giulia).

References

1. Flynn AJ, Boisvert P, Gittlen N, Gross C, lott B, Lagoze C, et al.
Architecture and initial development of a knowledge-as-a-service
activator for computable knowledge objects for health. Stud Health
Technol Inform 2018;247:401-5.

2. Gao Y, Burns SS, Lauzon CB, Fong AE, James TA, Lubar JF, et al.
Integration of XNAT/PACS, DICOM, and research software for
automated multi-modal image analysis. Proc SPIE Int Soc Opt Eng
2013;8674.

3. Zerbe N, Hufnagl P, Schliins K. Distributed computing in image analysis
using open source frameworks and application to image sharpness
assessment of histological whole slide images. Diagn Pathol 2011;6
Suppl 1:S16.

4. Rassias Andrikos C, Tsanakas P, Maglogiannis I. Versatile Cloud
Collaboration Services for Device-Transparent Medical Imaging
Teleconsultations. In Proceedings. Of CBMS. IEEE; 2017. p. 306-11.

5. Schuler R, Smith DE, Kumaraguruparan G, Chervenak A, Lewis AD,
Hyde DM, et al. A flexible, open, decentralized system for digital
pathology networks. Stud Health Technol Inform 2012;175:29-38.

6. Guo H, Birsa J, Farahani N, Hartman DJ, Piccoli A, O’Leary M, et
al. Digital pathology and anatomic pathology laboratory information
system integration to support digital pathology sign-out. J Pathol Inform
2016;7:23.

7. Inchingolo P, Beltrame M, Bosazzi P, Cicuta D, Faustini G, Mininel S, et
al. O3-DPACS open-source image-data manager/Archiver and HDW2
image-data display: An IHE-compliant project pushing the e-health
integration in the world. Comput Med Imaging Graph 2006;30:391-406.

8. Beer MIJ, Hassan MF. Adaptive security architecture for protecting
RESTful web services in enterprise computing environment. Serv
Oriented Comput Appl 2017;12:111-21.

9. Rezaeibagha F, Win KT, Susilo W. A systematic literature review on
security and privacy of electronic health record systems: Technical
perspectives. Health Inf Manag 2015;44:23-38.

10. Racoceanu D, Capron F. Towards semantic-driven high-content image
analysis: An operational instantiation for mitosis detection in digital
histopathology. Comput Med Imaging Graph 2015;42:2-15.

Deep Digital Convergence
of Radiology, Pathology, and
Clinical Molecular Biology

Harry B. Burke'

"Department of Medicine, F. Edward Hébert School of Medicine, Uniformed
Services University of the Health Sciences, Bethesda, Maryland, USA. E-mail:
harry.burke@usuhs.edu

Abstract

Historically, most radiology, pathology, and clinical molecular
biology information has been image-based and sequestered
within each domain. This means that their information could
not be combined to improve our knowledge of disease and
treatment. This paper proposes the convergence of radiology,
pathology, and clinical molecular biology through the
integration of their digital data in powerful statistical models
in order to create information synergies that can be used by
trained models to improve risk estimation, diagnostic certainty,
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treatment effectiveness, and clinical outcomes. This advance
will improve the quality and safety of medical care. Historically,
most radiology, pathology, and clinical molecular biology
information has been image-based and sequestered within each
domain. This means that their information could not be
combined to synergistically improve our knowledge of the
disease and its treatment. This paper proposes the convergence
ofradiology, pathology, and clinical molecular biology through
the integration of their digital data in a statistical model and
the use of the trained model to improve the quality and safety
of patient care. During the 20th Century radiology, pathology,
and clinical molecular biology were independent clinical
domains. Each existed in its own ocular realm — radiologists
looked at structural and functional anatomic images,
pathologists looked at tissue-based images, and clinical
molecular biology looked at biochemical false-color
microarray images. Each looked for features that could be used
to determine the risk of disease, diagnose disease, and assess
the severity of disease. Radiology viewed anatomic images
generated by: (i) Rontgen-ray images and (ii) algorithmically
constructed images created either from either digital molecular
data (for example, magnetic resonance imaging) or from analog
cellular data (for example, ultrasound). Pathology viewed
enhanced (stains, antibodies, etc.) images of molecular/
cellular/multicellular material affixed to slides. Clinical
molecular biology viewed analog false-color images of probe-
detected gene expression — which could be converted into
numeric data, but the resulting numbers were imprecise
because of the imprecision inherent in the false-color data.
There are several issues related to the visual detection of
image-based clinical information. One issue is additivity; each
clinical domain possesses some information that is not
contained in the other domains (orthogonality), but there was
no way to combine the images across the imaging domains in
order to create an additive model of the patient and disease.
Another issue is observability; there is more information in
the analog data than can be seen by an observer, therefore,
from a cybernetic perspective, the visual assessment of images
results in a loss of information. A third issue is subjectivity;
the visual assessment of analog data (signal detection) is
subject to high intra and inter-observer variability (error). This
lowers predictive accuracy for the three types of prediction,
namely, risk/prevention, diagnosis, prognosis/treatment) and,
as a consequence, decreases the clinical utility of the
information.!Y! Fortunately, radiology, pathology, and clinical
molecular biology data have become, or are rapidly becoming,
digital. This means that the images will no longer be needed
— they will be replaced by computational digital data. This
transition from analog to digital data permits, for the first time,
the convergence of the three domains. The union of these
imaging domains will increase the amount, and quality, of
clinically useful information through improvements in
additivity and observability, and it will reduce error through
the elimination of subjectivity. We can employ a conceptual
framework, a set of variables and the relations among them
that are thought to account for a phenomenon, to help us
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understand, and guide our modeling of, disease.” The body is
a unitary, complex biological system!®! which has the following
framework: (1) the body is an integrated, interdependent
hierarchical organization that is composed of systems, each of
which serves one or more biological functions, (2) the complete
uncompensated failure of one of the body’s necessary systems
results in the body’s failure — but the body has alternate systems
for some functions and they may be able to take over for a
failed system; (3) the body can be described in terms of four-
dimensional, interconnected levels of analysis, including the
molecular, cellular, and multicellular levels; (4) a level is
defined in terms of its units and rules (the allowed interactions
and activities) and the level’s units and rules are the constituents
of its functional systems at that level: (5) each level has
different units and rules; (6) the levels are interrelated a
hierarchical manner; (7) time is different at different levels,
i.e., things occur at different rates at different levels,
furthermore, body time is not equivalent to level time; (8)
complex biological systems are dynamical in that their units
are always interacting with each other in order to maintain
homeostasis; (9) in terms of the functioning of complex
biological systems, the inhibition of an activity is, many times,
just as important as the existence of the activity; (10) the body’s
biological systems self-organize based on their constitutive
units and rules; (11) complex biological systems have the
ability to adapt to changes in their internal systems, their
functions, and their external environment, which means that
they evolve over time; (12) complex biological systems have
the ability to maintain themselves, protect their existence, and
to learn from experience; and (13) the functioning of a complex
biological system depends on its present state, its environment,
and its feedback and feedforward processes. Finally, higher
biological/anatomical levels are constructed from four
dimensional multicellular functional units (MFUs). MFUs
have at least three characteristics: (1) they are composed of
multiple cell types and their local environment, including the
extracellular matrix, (2) their cells are co-dependent and spatio-
temporally interact in an organized, cooperative manner and
(3) they perform one or more biological functions that are
required to maintain homeostasis. Biological systems are
probabilistic (statistical) rather than deterministic (causal)
because they are loosely coupled rather than tightly coupled
systems. Tightly coupled means that what the system does in
the future is not influenced by what it is currently doing. For
example, a spring is governed by the rule of proportionality
which means that its response to a stimulus is always
proportional to the strength of the stimulus. Because tightly
coupled systems are deterministic, they are inflexible,
therefore, when conditions change they become maladapted
and dysfunctional. Loosely coupled means that the forces
affecting the present state of the system can determine, to a
greater or lesser degree, the future state of the system.
Biological systems are loosely coupled probabilistic systems
that can adapt to changes in themselves, their functions, and
their environment. For example, in physics, Newton and
Einstein created deterministic systems whereas quantum
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mechanics (a type of statistics) is probabilistic.y Complex
biological systems are loosely coupled to the extent that they
do not jeopardize their existence. A deterministic system does
not allow for choice, there is only one outcome, so there is no
uncertainty. A probabilistic system always has choice, there is
always has more than one possible outcome, so it is inherently
uncertain. Since information is anything that reduces
uncertainty®! (uncertainty is mathematically equivalent to
Boltzmann entropy) there is no information in a deterministic
system. The amount of information in a probabilistic system
is a function of its ability to reduce uncertainty. We are
interested in the uncertainty related to the accuracy of our risk,
diagnosis, and treatment predictions. For example, a patient’s
biomarker is informative if knowing its numerical value
reduces our uncertainty regarding the patient’s outcome (e.g.,
prognosis). Once we have a framework for complex biological
systems, we can begin to understand non-traumatic disease.
The homeostatic principle is necessary, but not sufficient, for
the normal functioning of a biological system. An important
homeostatic mechanism is deviation reduction (negative
feedback) — which maintains the system’s normal functioning.
Disease is a biological system that violates the body’s
homeostatic principle through the use of deviation amplification
(positive feedback) — it is this deviation amplification away
from homeostasis that allows the disease to cause the body’s
failure. Disease has many of the characteristics of a chaotic
system. Chaotic systems are a special class of loosely coupled
systems that employ deviation amplification processes. In some
situations, the body is able to contain the disease but, in other
situations, the disease takes control of the body and destroys
it. Our job is to help the body regain homeostasis through
traumatic interventions, for example, surgery, and/or through
molecular interventions, for example, medications. To
accomplish this task, we must attend to Sir William Osler who
said, “Medicine is the science of uncertainty and the art of
probability” — in other words, our goal is to reduce uncertainty
by creating statistical (probabilistic) models which integrate
multilevel biological information in order to create accurate
disease representations which help us understand and defeat
the disease. It might be thought that the convergence of
radiology, pathology, and clinical molecular biology is about
the collapsing of three levels of analysis related to anatomic
scale — from larger to smaller scale. But our levels of analysis
are not related to scale, rather, they are the hierarchical levels
related to the molecular, cellular, and multicellular systems
and subsystems. These systems and subsystems are fantastically
complex. Even the smallest subsystems are extremely
complicated, for example, researchers are just beginning to try
to model a single signal transduction pathway using
supercomputers.'® Modeling every system in the body is
currently not possible, so what is the point of combining
orthogonal biological information? The answer is that we are
not going to model all the workings of normal biological
systems, rather, we are going to model deviant biological
systems (disease) — we are going enter the disease-related data
into a statistical algorithm, let the statistical method learn the
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relevant-for-the-disease relationships (rather than all
permissible biological system relationships), create a trained
model that accurately represents the disease, and use that model
of'the disease to provide accurate probability estimates related
to disease for risk/prevention, diagnosis, and prognosis/
treatment. In other words, we do not need to know all the
aspects of a system in order to model those aspects related to
the disease and to use that model to improve the quality and
safety of patient care. Radiology, pathology, and clinical
molecular biology provide the digital molecular, cellular,
multicellular data we need to create our disease models.
Radiomics is radiographic digital data at the molecular,
cellular, multicellular levels.[? Non-Réntgen-ray radiology is
noninvasive and some modalities, such as magnetic resonance
imaging, are inherently digital and they can operate at the
molecular, cellular, multicellular levels. Pathomics, which is
invasive, is the use of statistical algorithms to digitize and learn
key features of pathology images and it can operate at the
molecular, cellular, multicellular levels.®! Proteogenomics,
which is also invasive, is the acquisition of disease-related
digital gene and protein information and, of course, it operates
at the molecular, cellular, multicellular levels.”) Radiomic,
pathomics, and proteogenomic digital data can be combined
with other digital data, including physiologic and laboratory
data, to create an optimal statistical model of the disease. The
resulting trained model acts as a surrogate for the disease: to
the extent that the model is an accurate representation of the
disease, it can inform us regarding the disease’s natural course
and it can tell us which treatment to select to slow or truncate
the disease’s progression. In order to select the best statistical
method to model the disease we need to formally understand
complex biological systems. One way to do so is through
network theory, i.e., nodes (functional units) and their
connections (the relationships and interactions between nodes).
Biological systems can be represented as a multiplex network,
i.e., the units at different levels are not separate entities, which
means that the data cannot be compressed into a single level
model or represented as an aggregated model. Furthermore,
we are modeling a dynamical rather than structural network,
therefore, a level’s units interact with each other and they are
constitutive within and across levels (the effects of one level
pass through from one level to another), and they can be
codependent.l' Furthermore, we have to be aware of multilevel
information redundancy, i.e., that the same information can be
shared across levels.!'!! Finally, we would like to use as few
levels as possible to explain the phenomenon because the more
levels there are the sparser the representation. These network
characteristics of biological systems have important
implications for the convergence of multilevel digital data.
One implication is that the statistical method must be able to
deal with multilevel, interactional data. Another is that the
method must be able to learn from the data. Finally, the method
should make few, if any, parametric assumptions. What is
required is a universal classifier, one that can learn multilevel
dynamical data, including capturing the nonlinearities and
interactions, and that will converge on the correct solution
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which, in this case, is the creation of an accurate model of the
disease. Fortunately, there is such a universal classifier, namely,
the neural network.['?l A three-layer backpropagation neural
network with an arbitrarily large number of sigmoidal hidden
layer units can fit any real continuous function and, given that
the solution is in the data and that there is sufficient data, it
will find the correct solution.["¥! The discriminative accuracy
of the trained neural network is a function of how well it models
the disease and it is measured by the receiver operating
characteristic (ROC).[" To be clinically useful a model’s ROC
should be at least 0.70.9. Our remaining task is to create clinical
decision support systems (CDSS) that: (1) function in the
prediction domains of risk/prevention, diagnosis, and
prognosis/treatment; (2) contain powerful neural networks that
use the patient’s digital data to make accurate individualized
patient predictions and that learn in order to improve their
performance over time; and (3) effectively communicate to
the clinician and patient in real time the individual patient
clinical information and predictions required for better shared
decision-making and optimal treatment. In summary, the
transformation of the clinical domains of radiology, pathology,
and clinical molecular biology from analog to digital data, and
the integration of their digital data in powerful statistical
models, will create information synergies that will improve
risk estimation, diagnostic certainty, treatment effectiveness,
and clinical outcomes. This advance will improve the quality
and safety of patient care.
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Abstract

Background: The accurate identification of prostate cancer
patients with prostate specific antigen (PSA) biochemical
recurrence (BCR) after radical prostatectomy is unsolved in
oncology. We present a set of prognostic bivariate models
discovered by a novel graph-based method integrating tissue
phenomics data from immunohistochemistry (IHC) and mRNA-
based gene expression profiling. Methods: Automated image
analysis and co-registration determined spatial properties of
cell populations detected in consecutive tissue sections stained
for CD3/CD8, CD68/CD163, CK18/p63 and CD34 (Definiens
Tissue Phenomics, Munich). For each of the 23 patients
(Gleason-score 6-9, pT2, age<=80 years), the resulting tissue
phenomics feature vector was expanded with gene expression
measurements (nCounter PanCancer Immune Profiling Panel,
NanoString Technologies, Seattle) from the same tissue
sample. A minimal spanning tree was constructed based
on graph nodes representing univariate prognostic features
by adding edges representing bivariate prognostic features.
Results: The edges of the prognostic network linking IHC with
gene expression features comprise: (1) a large distance from
CD163+ to CD3+CD8- cells and low MAGEC2 expression
indicates low BCR risk, and (2) a small distance from CD34+ to
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