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Abstract: The goal of disease-related proteogenomic research is a complete description of the unfolding of the disease 
process from its origin to its cure. With a properly selected patient cohort and correctly collected, processed, analyzed data, 
large scale proteomic spectra may be able to provide much of the information necessary for achieving this goal. Protein 
spectra, which are one way of representing protein expression, can be extremely useful clinically since they can be gener-
ated from blood rather than from diseased tissue. At the same time, the analysis of circulating proteins in blood presents 
unique challenges because of their heterogeneity, blood contains a large number of different abundance proteins generated 
by tissues throughout the body. Another challenge is that protein spectra are massively parallel information. One can choose 
to perform top-down analysis, where the entire spectra is examined and candidate peaks are selected for further assessment. 
Or one can choose a bottom-up analysis, where, via hypothesis testing, individual proteins are identifi ed in the spectra and 
related to the disease process. Each approach has advantages and disadvantages that must be understood if protein spectral 
data are to be properly analyzed. With either approach, several levels of information must be integrated into a predictive 
model. This model will allow us to detect disease and it will allow us to discover therapeutic interventions that reduce the 
risk of disease in at-risk individuals and effectively treat newly diagnosed disease.
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Introduction
Proteins are required for the normal functioning of the body, their dysregulation may be the cause of 
disease, and they may be the targets of treatment. They are complex three dimensional biochemical 
structures that can exist in several forms owing to post-translational modifi cation and other processes. 
Proteins have multiple actions. Its action at any moment in time depends on its structure, its interactions 
with other proteins, and its biochemical milieu. Proteins tend to exist in small qualities and they usually 
do not act by mass effect, in other words, the amount of protein is usually not the determinant of its 
activity. Proteins are intracellular, intercellular, and they circulate in the blood. Most serum proteins are 
bound; small quantities circulate in free form in the blood. A few proteins exist in high abundance in 
the serum, but the great majority are in low abundance. Most proteins have not yet been identifi ed. We 
do not need proteomics to identify the high abundance proteins in the serum, rather, we need it to dis-
cover new, low abundance proteins.

Proteins bind to, and interact with, other proteins as complexes. Therefore, proteins cannot be analyzed 
in isolation from other proteins. The high abundance proteins must be assessed with the low abundance 
proteins that are bound to them and the high abundance proteins must then be removed from the 
analysis. Proteomic representation technologies must be able to resolve individual proteins in a manner 
that allows them to be uniquely identifi ed, connected to their functional complexes, and associated with 
clinical outcomes.

The fi eld of proteomics has recently progressed to very sophisticated and sensitive methods of pro-
tein representation. “Protein representation”, in this paper, includes peptides, and biochemical modifi -
cations such as the addition of lipid/carbohydrate moieties to proteins, and fragments and breakdown 
products. It also includes isoforms of the protein. Some proteomic technologies are so sensitive that 
they can detect millions of “peaks” within a small region of the spectra. The technical sophistication 
of these methods requires that we are much more careful how we use them and their exquisite sensitivity 
requires that we be more careful how we select our study population (e.g., age, gender, food intake, 
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comorbidities), how we operationalize our data 
collection, handling and processing, and how we 
perform our data analysis and interpretation. 
Because of the large number of proteins that are 
usually assessed in a single experiment, issues of 
sample size and power must be properly addressed 
prior to beginning the experiment.

Some investigators believe that the data 
generated by a proteomic representation device, for 
example, spectra, are something real, that we are 
like looking at the proteins when we look at peaks. 
This would be an incorrect view of proteomics. 
Scientifi c instruments allow us to observe what we 
cannot detect directly by our senses by amplifying 
the phenomena. The analogy with a microscope is 
that if the lens is of poor quality or if it lacks 
suffi cient resolution, what we see will be indistinct, 
distorted, and either not useful or misleading. 
Proteomic devices transform the underlying pro-
teins, they provide a “representation” of the 
proteins; they do not show us the proteins them-
selves. One might suggest that this is a distinction 
without a difference, that the representation is so 
good that it is as if we were looking the protein 
itself. But the output of a proteomic device is not 
an exact copy of the protein; rather, it is a number 
that is the result of a series of manipulations and 
transformations of the raw data. Each manipulation 
and transformation has the potential to change the 
information, so that it no longer means what it 
originally meant in the sera. We are interested in 
devices that are “truth preserving”, i.e., that trans-
mit as close to the true phenomena as is necessary 
for the success of the experiment. Proteomic rep-
resentation devices are not a priori truth preserving, 
they must be proven to be so. In other words, before 
we can use proteomic representations in clinical 
medicine they must be proven to be an accurate 
characterization of the proteins they purport to 
represent.

For many diseases we do not possess tissue that 
can be analyzed, all we have are bodily fl uids, e.g., 
urine, secretions, and sera. Sera is an inviting tar-
get for proteomics because the technology can 
represent circulating proteins concentrations. The 
down side of this approach is that the number of 
circulating proteins is unknown, many proteins 

circulate in bound form, and protein degradation 
products also circulate in the sera. In addition, one 
does not have tissue specifi city – the circulating 
proteins represent the state of the entire body rather 
than the state of a disease. Because few proteins 
are unique to a specific tissue, proteins are 
expressed by multiple tissues; the linking of a 
specifi c protein concentration to a specifi c tissue/
organ abnormality can be problematic. Further, 
disease and patient protein heterogeneity are dif-
fi cult to defi ne independently of the circulating 
proteins themselves.

In terms of their analysis, gene microarrays and 
protein spectra are very similar, and some investi-
gators have applied the same methods to both, for 
example, hierarchal clustering. (Eisen et al., 1998; 
Perou et al., 1999) The view that gene microarrays 
and protein spectra are similar may arise from the 
fact that both consist of many variables at the 
molecular level of analysis. But genes and proteins 
are completely different phenomena, both in struc-
ture and function. Further, there are currently 
problems with the analysis of gene arrays, for 
example, the inability of investigators to repli-
cate their work in even simple human systems 
(Catherino et al., 2003; Tsibris et al., 2002; Whang 
et al., 2003) or the work of others (Bullinger et al., 
2004; Valk et al., 2004), that suggests that an in toto 
movement of methods from genes to proteins may 
not be advisable at this time and that investigators 
should be vary careful when creating a close 
analysis analogy between these two domains.

Study Design
There are two types of studies, exploratory/
discovery and validation. Exploratory/discovery 
studies do not test hypotheses, they do not perform 
power calculations, and the study design does not 
follow pre-specifi ed rules. These studies may be 
used to fi nd proteins and protein patterns that 
become the targets of validation research. Most inves-
tigators take great joy in publishing exploratory/
discovery research and literature is replete with 
this work. The problem is that with enough bend-
ing and twisting of the methods and data almost 
any effect can look good. Most exploratory/
discovery studies possess true phenomena but there 



17

Analysis of Spectral Data

Cancer Informatics 2005:1

is no way, based on what is published, to know if 
they are true. An approach based on self-restraint 
should be adopted and publication should wait until 
the appropriate phase in the validation process.

Once an investigator possesses a hypothesis, 
based on exploratory studies or biological plausi-
bility, a study population can be defi ned, a study 
method, for example, case-control or cohort, can 
be established, and power calculations can be 
performed based on the hypothesized effect size 
and the variance of the variables. Power calcula-
tions in proteomics are rarely preformed and the 
studies are almost always underpowered, which 
usually results in the parameter estimates having 
too high a variance to be reliable.

There are many types of study designs including: 
pedigree (a kind of case report), retrospective case-
control and cohort studies, prospective case-control 
and cohort studies, and randomized prospective 
cohort studies (usually called randomized controlled 
trials). Each of these types of studies has strengths 
and weaknesses that must be considered when 
designing a proteomics study. The main problem 
with nonrandomized studies is that there can be 
unmeasured covariates that were powerful predictors 
of outcome that were used in the patient selection 
process but that were not adjusted for in the analysis 
because they were not measured. Case-control stud-
ies are especially sensitive to patient selection bias, 
but any cohort study, including randomized studies, 
can possess patient selection bias, the difference is 
that in randomized studies, rather than affecting the 
results, the bias affects the generalizablility of the 
study, i.e., will others receive the degree of benefi t 
demonstrated in the study. Further, because random-
ized studies usually use very specifi c entry criteria, 
to create a homogeneous study population, they are 
very sensitive to study design differences. This is 
why two large randomized studies with the same 
hypothesis can produce different results.

Three phases of validation 
of a proteomic biomarker 
and biomarker patterns
To validate a biomarker one must demonstrate, for 
a particular clinical use, that the biomarker 
reliably and accurately predicts a clearly defi ned 

clinical outcome in a distinct target population 
over an specified interval of time. A properly 
validated biomarker will be reproducible across 
laboratories, investigators, and similar patient 
populations and it will maintain its predictive 
accuracy when used in community settings.

The process of biomarker validation is distinct 
from biomarker discovery. Once a putative 
biomarker has been discovered, it should be 
assessed through a formal validation process in 
order to determine if it is a reliable, accurate bio-
marker, and that it is clinically useful for a specifi c 
clinical outcome in a target population over a 
specifi ed time interval. There are three phases of 
the validation of biomarkers, namely, analysis/
testing, replication, and validation.

Phase I
The fi rst phase involves the analysis and testing 
of the biomarker by an investigator using a retro-
spective patient cohort in the investigator’s labora-
tory. At the start, the retrospective dataset should 
be split, usually 70/30, with 70% of the data being 
used for the analysis and 30% used to test the 
analysis. In this phase, the investigator is learning 
about the molecular biomarker and testing what 
has been learned. The molecular biomarker can 
be analyzed using as many laboratory methods, 
statistical techniques, thresholds (cut-off points), 
patient populations, independent variables, and 
outcomes as is required for the investigator to 
optimize its clinical utility. The effects of 
confounders can be determined and subgroups can 
be assessed. But, the optimized molecular 
biomarker should be assessed on the test dataset 
only one time. If more testing is necessary, then an 
additional dataset is needed.

If a biomarker is to be thresholded, there should 
be only one threshold, resulting in all patients 
being either positive or negative. The biomarker 
should not be stratifi ed into three or more states, 
usually through the use of two or more thresholds. 
Further, the biomarker should not be divided into 
ranges, for example, quartiles, and the highest and 
lowest compared, rather, the entire range of the 
biomarker should be assessed for predictive accu-
racy because extreme cases are usually the most 
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easily predicted. It is the middle range of outcomes, 
i.e., those patients who are not destined to die 
quickly and who are not at an extremely low risk 
of death, that are the most diffi cult to predict. It is 
the application of a biomarker to the middle of this 
population that reduces the its overall predictive 
accuracy. Therefore, if the investigator does not 
wish to make a single positive-negative threshold 
the biomarker should be left as a continuous 
variable.

The point of the fi rst phase is to determine if 
the biomarker is suffi ciently accurate to warrant 
its proceeding to the next phase of validation. 
Although there are no hard and fast rules regarding 
the accuracy of the molecular biomarker, other than 
the fact that it will decline at each phase of the 
validation process, the investigator should set 
a minimum test dataset ROC for each phase of 
the process, the threshold selected will depend on 
the costs and benefi ts inherent in the use of the 
biomarker.

Phase I studies, where the investigator has 
changed the analysis many times based on looking 
at the test results in order to improve the marker’s 
accuracy, do not merit publication. If the investiga-
tor only used the test dataset once, then those test 
results may be publishable. However, the fact that 
it is a Phase I biomarker study must be prominently 
stated in the introduction, methods and discussion 
sections. The publication of biomarker results 
requires the presentation of specifi c information 
including the exact laboratory method to be used 
to determine the value of the molecular biomarker, 
its threshold (cut-off), the target population, the 
clinical use of the biomarker, the outcome of inter-
est, and the time interval of the outcome prediction. 
The specification of the study characteristics 
should be suffi ciently detailed so that the indepen-
dent investigator in another laboratory can inde-
pendently assess the molecular biomarker’s 
predictive accuracy in his or her retrospective 
patient cohort.

Phase II
The second phase is the replication of the testing 
component of the Phase I study by an independent 
investigator in another laboratory using a different 

retrospective patient population. A Phase II study 
begins with the original investigator specifying the 
validation characteristics of the molecular bio-
marker, usually in a publication. These character-
istics are derived from the testing component of 
Phase I and can no longer be changed for Phase II 
since it is assumed that, based on the Phase I 
analysis and testing, these previously determined 
and optimized characteristics will provide the 
optimal predictive accuracy for the molecular 
biomarker. Phase II studies are publishable with 
the caveat that they should be identifi ed as Phase II 
studies, and should include an explicit discussion 
of all the inherent limitations of a Phase II study.

Phase III
The third phase is a prospective, multi-investigator, 
multi-institutional study. Prospective studies 
usually are very long, large, and expensive. Thus, 
there should be strong evidence from Phase II in 
support of the molecular biomarker if it is to prog-
ress to this phase. The molecular biomarker must 
be evaluated in Phase III using the same validation 
characteristics as were specifi ed in the testing 
component of Phase I and assessed in Phase II.

To validate a proteomic biomarker one must 
demonstrate that it accurately predicts the outcome 
it purports to predict in its target population. The 
standard to which a valid biomarker is held is that 
other independent investigators are able to repro-
duce its predictive accuracy using independent, but 
similar populations.

For the purposes of this discussion we will use 
the term “biomarker” to refer to both an individual 
predictive factor and a group of factors (i.e., a 
proteomic pattern). It should be noted that we do 
not need to know a protein’s functions in order to 
use it as a predictive factor, but we should be able 
to identify it by name it if we are to reduce the 
number of nonplausible results. If we do not know 
its name, then we must be more methodologically 
rigorous in order to minimize error.

There are three phases to the validation of a 
biomarker, namely, learning, analysis/testing, and 
replication. Investigators, including this author, 
have used the nomenclature “learning training”, 
“learning test”, and “replication”. The nomenclature 
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here differs from what has been used in the past 
because the approach proposed here is more 
rigorous than past validation approaches.

Each phase requires a dataset. The learning and 
analysis/testing datasets may be either independent 
datasets or they may derived from a larger dataset 
by randomly dividing the larger dataset into two 
subdatasets. The two subdatasets do no have to be 
of the same size. The replication dataset must be 
independent of both the learning and testing 
datasets. Although it would be ideal for all three 
phases to use prospectively collected data, the 
learning and testing datasets may be retrospective, 
but the replication dataset should be a prospectively 
collected dataset so that it can contain all the 
relevant factors, defi ned correct, and collected in 
the appropriate population.

In the learning phase the investigator selects 
one or more proteins or protein patterns to be 
candidate biomarkers. The learning dataset is then 
randomly split into a training and hold-out dataset, 
where the hold-out dataset is usually smaller than 
the training dataset. The biomarker is modeled 
using a statistical method and its accuracy is tested 
on the hold-out dataset. During the learning phase 
the investigator may assess many statistical 
methods, add or remove biomarkers, or modify the 
analysis in any way. There are no limitations on 
what may be done during this phase of the analysis. 
No accuracy assessment from the learning phase 
should be reported.

In the analysis/testing phase the investigator 
uses the trained model, the model that was 
developed in the learning phase, one time on the 
tests dataset. The test dataset had its outcomes 
removed. The biomarker of the test patients is run 
through the model, with the output of the model 
being an outcome prediction for each patient. The 
predicted outcomes are compared to the true 
outcomes and that predictive accuracy is reported. 
But it should be understood that the biomarker 
has not yet been validated. This is because the 
same investigator using the same dataset per-
formed both the learning and the training. Many 
unknown and even unanticipated sources of bias 
could exist that could have affected the model and 
its predictions. Unfortunately, some investigators 

use the learning dataset to create many models 
and they test each model on the test dataset and 
they report the model with the highest accuracy. 
This is not an acceptable approach to the validation 
of a biomarker.

The hallmark of science is replication. For a 
biomarker to be valid it must be applied by an 
independent investigator on a prospectively col-
lected, independent dataset. The process is similar 
to what occurs in the testing phase. The trained 
model is applied one time to the replication dataset. 
The predictions of the model are compared to the 
true outcomes and that predictive accuracy is the 
accuracy for the biomarker for that population. 
When reporting validation results, the parameter 
estimates and their variances should be presented 
and the raw data, with appropriate safeguards, 
should be made available to other investigators so 
they can assess the results.

The outcome that a biomarker predicts can be 
of any type. When there are more than two discrete 
outcomes, or when the outcome is continuous, it 
is usually not appropriate to compare the two out-
come extremes, for example, the highest and low-
est quartile. This is because it is usually the middle 
group that is the most diffi cult to predict, and which 
decreases overall predictive accuracy, because 
extreme cases are usually the most easily pre-
dicted.

Finally, one cannot perform serial compari-
sons, as a kind of robustness measure, to validate 
a biomarker unless an exact match is required. 
What this means is that one cannot take a set of 
biomarkers, i.e., a “pattern” (which implies a 
single unit), from the test phase and compare 
them to results from other datasets and claim that 
because some of the biomarkers from the other 
database match your biomarkers that those 
biomarkers that matched are validated. We can-
not say this because of the inherent variability in 
proteomic biomarkers. Given long enough lists, 
some biomarkers will always match by chance. 
If the investigator wishes to compare for an exact 
match, where all the biomarkers in both lists have 
to match exactly, that would be an acceptable 
replication experiment. Some might fi nd this too 
stringent a criteria, that an approximate match 
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will do. An approximate match will result in the 
acceptance of many false patterns.

Assessing biomarker accuracy
There are three components to biomarker accu-
racy, namely, the biomarker itself, i.e., the predic-
tive power of the biomarker for the outcome of 
interest in the relevant population, the effi ciency 
of the statistical method used to associate the 
biomarker with the outcome, i.e., how good the 
statistical model is at associating the independent-
dependent variable pairs, and the method for 
assessing the accuracy of the model’s predictions, 
i.e., the method we use to measure the association 
between the model’s predictions and the true out-
comes.

An important consideration in model building 
is model instability. Model instability occurs when 
the independent variables’ parameter estimates can 
vary widely, so that if the order in which the 
patients were presented to the statistical method 
and the order in which the variables were presented 
to the statistical method were both changed, then 
the parameter estimates will signifi cantly change 
because of the high variance in the parameter esti-
mate. To avoid model instability we need at least 
15 – 20 events per independent variable in the 
model. (We also need 15 – 20 events per indepen-
dent variable in the test and validation datasets.) 
With this number of events we can “fi x” the rela-
tionship between the independent variable and the 
outcome. Events are defi ned as the least frequent 
of the outcomes. Thus, for a binary outcome, 
e.g., alive and dead, whichever event occurs least 
often is the event rate. The optimal ratio for assess-
ing a binary outcome is a 50% event rate. As the 
event rate moves away from 50%, toward 0%, it 
becomes easier to make predictions because one 
can simply predict that the more frequent event 
will happen. For example, in terms of percent cor-
rect, if the event rate is 10% then one could be 
correct 90% of the time by always predicting the 
occurrence of the not-event.

This example illustrates why one cannot use 
percent correct as the measure of predictive accu-
racy. Statistical models can learn to “bet the 
frequency” and ignore the independent variables. 

In fact, with low event rates, rarely will any 
independent variables do as well as betting the 
frequency.

Another measure of predictive accuracy is 
sensitivity and specifi city. This approach requires 
that the variables or the model output be made 
binary, i.e., that some threshold is applied to the 
variable or to the model output, for example, above 
a certain number is positive and below is negative. 
One problem with this approach is that threshold-
ing variables usually reduces their accuracy. 
Another problem is that different investigators may 
pick different thresholds so that variables and 
models cannot be compared across investigators. 
Since comparison is necessary for validation sen-
sitivity is not an appropriate accuracy measure.

Although proteomic investigators have reported 
100% sensitivity and 95% specifi city, (Petricoin, 
2002) no biomarker for an important medical 
problem can achieve this degree of accuracy, if 
only because there is always variance, resulting in 
prediction error, in real-world classifi cation tasks. 
In addition, there can be a bias in the study popu-
lation, in the sample collection, handling, and 
storage, or in the processing of the samples that 
will affect predictive accuracy. Finally, one way to 
achieve high predictive accuracies is to select an 
easy task.

Although there are new methods under develop-
ment, currently the area under the receiver operat-
ing characteristic curve (ROC) is the best measure 
of predictive accuracy. (Swets, 1996) It can be used 
to assess and compare the adequacy of statistical 
models. The ROC can be directly calculated by 
Somer’s D (Somer, 1962) or it can be approximated 
by its trapezoidal area. (Bamber, 1975) The area 
under the curve is a nonparametric measure of 
discrimination. The receiver operating character-
istic area is independent of both the prior probability 
of each outcome and the threshold cutoff for cat-
egorization. Its computation requires only that the 
prediction method produce an ordinal-scaled rela-
tive predictive score. In terms of mortality, the 
receiver operating characteristic area estimates the 
probability that the prediction method will assign 
a higher mortality score to the patient who died 
than to the patient who lived. The receiver 
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operating characteristic area varies from zero to 
one. When the predictions are unrelated to survival, 
the score is 0.5, indicating chance accuracy 
(fl ipping a coin). The farther the score is from 0.5 
in either direction, the greater the accuracy, i.e., 
the better the prediction method is, on average, at 
predicting which of two patients with different 
outcomes will be alive. The ROC takes into 
account event rates below 50% so that “betting the 
frequency” results in a 0.5, chance, accuracy. One 
can think of the ROC as an estimate of accuracy 
across all possible sensitivity/specifi city pairs. 
Signifi cant differences in the receiver operating 
characteristic areas between two models can be 
tested following Hanley and McNeil (1982), or by 
calculating their asymptotic variances (algorithm 
available by email from the author), or by calculat-
ing the empirical variance using the bootstrap 
method. (Ffron, 1993) Although, in theory, the 
ROC is linear across its range, for most clinical 
problems the ROC is nonlinear in that it is more 
diffi cult as one moves from 0.5 to 0.6 to 0.7 to 0.8 
to 0.9 to 1.0. This is because once one has predicted 
the easy cases, the remaining cases are harder to 
predict. Today, most ROC values reported in 
medicine are in the 0.70 – 0.80 range. Proteomics 
may allow researchers to discover biomarkers that 
achieve ROCs in the range of 0.8 – 0.9.

Data analysis
Fundamental to the analysis of proteomic data is 
the fact that proteins are nonlinear and interac-
tional. They are nonlinear because they are affected 
by enzymes and other proteins, and they are inter-
actional because they are usually only active when 
complexed with other proteins. Therefore, any 
method for analyzing proteins must be able to 
capture nonlinearity and interactions. Most regres-
sion methods can deal with both by adding non-
linearity terms to each variable and adding all 
possible interactions between variables to the 
model. The problem is that as the number of vari-
ables increases the number of interactions increases 
exponentially and that the model quickly becomes 
overparameterized and unstable. Artifi cial neural 
networks with weight decay (Burke et al., 1995; 
Burke, 1996a, 1996b, 1998a, 1998b, Bostwick and 
Burke, 2001) and some other advanced statistical 

methods can effectively capture nonlinearity and 
interactions.

Another issue that must be addressed is that of 
integrating demographic level factors, e.g., age, 
gender, race, with clinical variables, e.g., tissue 
and serum factors, with genomic factors, with the 
proteomic factors. (Burke and Henson, 1999) A 
model that is used to assess proteomic factors, from 
spectra or any other source, should include these 
other factors with the proteomic factors and the 
proteomic factors should independently and sig-
nifi cantly add information. There are substantive 
issues that arise when we do this. One important 
issue is that of cross-level colinearity, of which 
there is a paucity of examples because it has not, 
as yet, a well known problem. What this means is 
that in hierarchal systems the units at the lower 
level are constitutive of the units at the next higher 
level so when units at different levels are com-
bined, there can be colinearity. In addition, when 
proteins interact with other proteins, if not properly 
analyzed, one of the proteins may be inappropri-
ately removed because of colinearity.

Proteomics may be used to explore the mecha-
nisms that give rise to a disease and they may 
be used, without knowledge of their role in the 
disease process, as predictive factors and thus allow 
the determination of either risk of disease, or exis-
tence of disease, or prognosis and treatment. 
(Burke, 1999) On a practical level pharmacopro-
teomics is the search for the proteomic factors that 
predict the disease’s response to a specifi c treat-
ment. In other words, pharmacoproteomics is the 
discovery of proteomic patterns that are therapy-
specifi c prognostic factors, i.e., that predict whether 
an individual patient with a particular disease will 
respond to a specifi c treatment and they may assume 
a dual role, also being the targets of therapy.

Information theoretic perspective 
and massively parallel information
A large scale (thousands of proteins) protein spec-
trum creates an analog representation of the aver-
age relative quantity of a protein across a huge 
number of cells for a large number of proteins at 
a biologic moment in time for a particular patient. 
The output of a protein spectra contains the signal, 
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the true average relative quantity of each protein, 
and noise, the spurious and background activity 
level. Protein spectra are a source of massively 
parallel information. They are able to provide a 
large amount of information in a non-serial manner 
(the information is not the result of a conditional 
sequence of investigative events). There are few 
examples of massively parallel information in sci-
ence, thus there is little known about its analysis.

Initially it should be assumed that every data 
element in a massively parallel information repre-
sentation has the potential to be a meaningful, 
i.e., to be a necessary but not suffi cient part of the 
pattern. The reason for this assumption is that if it 
were not possible for each data element to be 
meaningful then massively parallel information 
would not necessary. It is precisely because any 
element could be important that we are interested 
in, and willing to deal with, the problems of 
massively parallel information. Typically microar-
ray data contains thousands of expression measures 
per case and few cases. (Lander, 1999) Microarrays 
present an analytic problem that is NP-hard. NP 
stands for “non-deterministic polynomial time” 
and represents a class of computational tasks for 
which a potential solution can be checked 
efficiently for correctness, yet finding such a 
solution appears to require exponential time in the 
worst case.

Magnetic resonance imaging (MRI) might be 
relevant to protein spectra because it generates 
large amounts of information in parallel in an 
image processing paradigm. But its task is made 
orders of magnitude simpler by image processing 
having a preexisting natural distance metric, 
i.e., spatial proximity. In the protein spectra domain 
this would be similar to proteins being a priori 
arranged in the spectra in the natural order of their 
decreasing relatedness to a particular biologic 
function.

It is reasonable to ask why we should deal with 
the problems inherent in massively parallel infor-
mation. Simply put massively parallel information 
is essential to understanding complex diseases. 
Because protein spectra represent information in 
a massively parallel fashion they can simultane-
ously present multiple components of a complex 

system. Prior to protein spectra proteomic research 
had to proceed in a stepwise fashion, from one 
biologic component to the next. While this is 
appropriate (but not optimal) for normal systems 
it is not a viable approach when dealing with com-
plex (nonlinear, interactional) tightly integrated 
dynamical systems. Such systems must be 
examined and understood as a whole rather than 
as a series of pieces.

Three characteristics of a complex dynamical 
systems are: (1) they possess alternative pathways, 
i.e., there are different ways of accomplishing the 
same result, (2) each component has multiple 
functions, i.e., different activities that it can perform, 
and (3) pathways and functions are determined by 
the activities of other components of the system. 
This type of system cannot be successfully studied 
in pieces because when the study is completed the 
pieces will not fi t together. In other words, disease 
is not a jigsaw puzzle whose pieces can be taken 
apart and put back together. (Burke, 2000)

Protein patterns
“Pattern” can be operationally defi ned as a set 
of elements that occur in a systematic and 
meaningful-for-the-task manner. In the context of 
protein spectra, there are two types of pattern tasks. 
One type, pattern discovery, is the detection, or 
more correctly, the learning of a new pattern from 
the data. The other type, pattern recognition, is the 
recognition of a pattern when it occurs again, 
i.e., the ability to identify a pattern as an instance 
of a known pattern. Pattern discovery and recogni-
tion are ancient problems; their literature extends 
back to the ancient Greek philosophers. Today they 
are a central problem in the psychology of human 
perception. Pattern recognition is the less challeng-
ing problem because once a pattern is known 
templates and other approaches can be easily 
applied.

The analysis of large scale protein spectra-
generated information is intractable when every 
protein is considered to be a continuous variable, 
when there are tens of thousands of proteins, when 
there is inter-patient variation, when there is 
disease variation (stage, subtype), when there is error 
in the proteomic technology, and when there are 
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only a few exemplars of the pattern, i.e., only a 
few individuals are represented by a protein spec-
tra. The analysis of large scale protein spectra can 
be simplifi ed by thresholding each protein’s signal 
(creating a binary variable), minimizing disease 
and inter-patient variation, and increasing the 
number of patients. But even in this situation, 
because of protein modifi cations and other issues 
there are more proteins than one would like to 
analyze. In the simplest of conditions, when the 
proteins are considered binary variables, there are 
2n possible patterns (where n is the number of 
proteins and their variants). 2n is still a very large 
number. Clearly, this is very high dimensional 
space. This space has its own characteristics, for 
example, the curse of multidimensionality. High 
dimensions space is extremely large and the data 
points move to the edges of the space.

Two approaches to the analysis of 
proteomic data
One can approach the analysis of proteomic data 
from either a “top-down” or a “bottom-up” 
perspective. Top-down starts with all the data and 
reduces it based on selected heuristics, for example, 
the largest relative peaks (differential expression), 
or the clustering of relative peaks, or the principal 
components analysis of relative peaks. The bottom-
up approach either assess all the m/z ratios indi-
vidually in a exhaustive manner or tests the 
relationship between specifi c proteins in the spectra 
and the clinical outcomes, usually by hypothesis 
testing. The top-down approach is usually uses 
unsupervised learning methods, but it may use 
supervised learning in selected cases, and it is rarely 
able to use signifi cance testing, whereas the bottom-
up approach usually uses supervised learning meth-
ods and almost always uses signifi cance testing.

Sources of variance (error) in the 
analysis of proteomic data
There are several sources of error in the proteomic 
profi le including: (1) The proteomic technology 
itself. Issues related to the various protein repre-
sentation technologies will not be addressed in this 
paper; (2) the patients; (i) the type and composition 
of the specimen that is utilized, (ii) where in the 

disease process the patient is at specimen collection, 
and (iii) individual and population proteomic 
variation; (3) the disease; there may be sub-types 
of the disease and there may be different pathways 
that result in the fi nal common pathway of the 
disease; (4) the collection, handling, and storage 
of the specimens; (5) the generation of the data 
from the specimens; (6) the ineffi ciency of the 
statistical method in capturing the pattern; (7) the 
measure of accuracy employed; (8) random 
error.

Promising areas of investigation
There are several interesting approaches to protein 
spectra-based pattern discovery. Stochastic search 
methods may be useful for fi nding putative gene 
patterns. (George and McCulloch, 1993) These 
methods attempt to identify possible subsets of 
explanatory variables that can then be evaluated. 
Other approaches currently being assessed for their 
effi ciency is dealing with massively parallel data 
include a combinatorial multivariate method 
(Califano, 2000) and mixture models. (Wallace and 
Dowe, 1997; Fraley and Raftery, 1998; Liu et al., 
1999) The combinatorial method proposed by 
Califano is a supervised learning task that improves 
as the number of cases increases. Finite mixture 
models assume that the data arise from a mixture 
of several unknown heterogeneous populations. 
Titterington et al. (1985) point out that fi nite mix-
ture distributions have been used as models since 
the work of Newcomb in 1886 and Pearson in 1894. 
Mixture models can be used for unsupervised and 
learning tasks. Many estimation methods can be 
applied to fi nite mixture problems including the 
method of moments, maximum likelihood, 
minimum chi-square, least squares, and Bayesian 
approaches. (Titterington et al., 1985; Roeder, 
1994; Richardson and Green 1997; Bohning, 1999) 
Finally, artifi cial neural networks may be useful 
for the analysis of proteomic data. (Burke et al., 
1995; Burke, 1996a, 1996b, 1998a, 1998b, 
Bostwick and Burke, 2001)

Summary
Proteomics is a very diffi cult area of investigation 
because of the number of proteins in the human 
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body, and because proteins, when they function, 
are nonlinear and interactional. Any proteomic 
technology that will be useful in this area must, 
eventually, be able to reliably and unambiguously 
distinguish individual proteins. Any analytic tech-
nology must be able to reliably and unambigu-
ously relate individual proteins or groups of 
proteins to an outcome, Finally, all the research 
in this fi eld must be replicated before it is used 
clinically. Any rush to publish without proper 
scientifi c rigor can mislead the fi eld and poten-
tially harm patients.
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