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Integrating Multiple Clinical Tests
to Increase Predictive Power

Harry B. Burke

1. Introduction

Clinical tests provide information that can be used by statistical methods to
make patient outcome predictions. Outcomes are risk of disease, existence of
disease, and prognosis. In this chapter we define and describe predictive fac-
tors and clinical prediction and explain how combining predictive factors can
increase predictive accuracy, describe the advantages and disadvantages of
commonly used statistical methods, and recommend an approach to the report-
ing of predictive factor research.

2. Predictive Factors

A predictive factor predicts an outcome (risk of disease, existence of dis-
ease, or prognosis) by virtue of its relationship with the disease process that
causes the outcome. For example, the prognostic factor mutant p53 is associ-
ated with breast cancer because of its role in the regulation of apoptosis. Such
terms as marker, biomarker, predictor, prognosticator, indicator, surrogate fac-
tor, and intermediate biomarker have been used to identify variables that are
connected to medical outcomes. Their meanings overlap, and their undifferen-
tiated use can cause confusion. All predictive factors are markers of disease
(i.e., they are in some way associated with the disease process), but not all
markers of disease have sufficient predictive power to be called predictive fac-
tors. We use the term factor to identify markers of disease that either are, or
have the potential to be, predictive for a given outcome in a specified model.

~  Determining whether a marker is a predictive factor requires that:

1. The variable is measured in a defined population;
2. The population is followed until enough outcomes have occurred (i.e., deaths); and
3. The relationship between the variable and the outcome is determined.
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If the variable predicts the outcome with “sufficient” accuracy (where “suf-
ficient” varies with the question being addressed) in a specified model, it is
called a predictive factor. If the predicted outcome always occurs, we say that
the predictive factor and the outcome are 100% linked, i.e., the factor has a
100% predictive accuracy (1).

There are three types of predictive factors; risk, diagnostic, and prognostic
(1). They differ in their outcomes and predictive power. “Risk” is an ambigu-
ous term. We use “risk” to refer to “risk of disease.” “Risk,” when used in the
context of “risk of recurrence” or “risk of death,” is called “probability,” as in
“probability of recurrence” and “probability of death.” Risk factor; the main
outcome of interest is incidence of disease. The factor, either alone or in com-
bination with other factors, is much less than 100% predictive of the disease
occurring by a specified time in the future. Risk can be viewed as a propensity
for the disease. Diagnostic factor; the main outcome of interest is also inci-

dence of disease. The factor, either alone or in combination with other factors,

1s close to 100% predictive of disease. Prognostic factor; the main outcome
of interest is death. A factor is rarely a strong predictor in isolation from other
prognostic factors. There is domain overlap in that risk factors can be prognos-
tic, but they cannot be diagnostic, and diagnostic factors can be prognostic, but
they cannot be risk factors.

There are three subtypes of predictive factors: natural history, therapy-
dependent, and post-therapy (1). Natural history predictive factors predict the
future occurrence (risk), current existence (diagnosis), or course (prognostic)
of a disease without an intervention. For risk and prognosis, natural history
should the baseline against which all interventions are tested. Therapy-
dependent predictive factors assume that there are effective therapies and
predict whether the patient will respond to a particular intervention (for
example, chemoprevention or chemotherapy). A natural history predictive fac-
tor may also be a therapy-dependent predictive factor. Post-therapy predictive
factors require that patients respond to an intervention. They predict recur-
rence of the risk of disease or recurrence of the disease.

The predictive power of a factor depends on its intrinsic and extrinsic powers:
The intrinsic predictive power of a factor is related to its “connectedness” to the
disease process, i.e., its association to the disease process. The less connected the
factor is, the less predictive it is. A direct connection means that the factor is an
integral part of the disease process itself. An indirect connection means that it is
not an integral part of the disease process but is related to the disease process,
such as being a byproduct of it (i.e., a secondary infection). The extrinsic predic-
tive power of the factor depends on the question being asked, i.e., the specific
factor-outcome relationship being examined. For a specific disease process and
outcome, the predictive accuracy of a factor depends on:

Tests to Increase Predictive Power 5

1. How closely connected the factor is to the disease process (individual fac-
tor power) and its relationship to the other factors (degree of predictive
overlap);

2. How easy it is to collect and measure the factor; and

3. The degree to which the selected statistical method is able to capture the indi-
vidual factor’s predictive information and to integrate it with the information of
other factors.

It is rarely the case that one factor is sufficiently predictive, i.e., that it
is able to predict the outcome of interest with 100% accuracy. The usual
strategy, when dealing with predictive factors, is to combine several in a
predictive model. The most useful grouping of factors is one in which all
of the factors are powerful and predictively orthogonal to each other, i.e.,
they index independent aspects of the disease process. If they represent
aspects of the disease that are not independent of each other, then to the
degree that their information overlaps is the degree to which one will not
add predictive power. The statistical method employed must be able to
capture the complexity of the disease process indexed by the predictive
factors.

A predictive model for a specific outcome is the result of entering one or
more predictive factors into a statistical method. The statistical method
attempts to capture the relationship between the factors and the outcome. For
example, the mathematical formula generated by the logistic regression sta-
tistical method relates the predictive factors (input variables), in terms of
their B-coefficients, to a binary disease outcome (relapse, death, and so forth).
It should be noted that the predictive power of a factor depends on the spe-
cific statistical method selected and on the other factors selected to be
included in the model. The statistical model that results from the application
of a statistical method, learning the relationship between the factors and the
outcome, may or may not be the most efficient at capturing the predictive
power of the factors.

Before discussing specific statistical methods, it is important to distin-
guish among significance, accuracy, and importance (2). Model significance
asks if the observed predictions are really different from those produced by
another model or from those resulting from chance.

Significance is not accuracy. Accuracy is the association between the
model’s predictions and the known outcomes in a test population. The

- importance of a model or a factor is determined by whether the model or

factor possesses sufficient accuracy to be useful in answering a particular
clinical question. Finally, the assessment of model or factor significance,
accuracy, and importance must be based on test data set results, not on train-
ing data set results. '
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3. Advantages and Disadv_antages' of Statistical Methods

Many methods can be used to combine predictive factors. In cancer, they
include bins, Stages, and indexes; decision trees; and regression methods,
including logistic, proportional hazards, and artificial neural networks.

Bins are the result of the mutually exclusive and exhaustive partitioning of
discrete variables. Each combination of variable values is a bin, and all patients
are placed in the bin corresponding to their variable value combination (2). An
example is the TNM classification of breast cancer (3). Tumor size (Tis, T1,
T2, T3, T4), number of positive regional lymph nodes (NO, N1, N2, N3), and
existence of metastases (M0, M1) produce 40 bins (2).

Each patient in a bin receives the same prediction; namely, the most fre-
quent outcome. If there are enough patients in each bin, it can be shown that
the most frequent outcome is the best predictor of the true outcome. In
other words, no prediction model can be more accurate than a bin model if
the variables are discrete and the population is large. Problems with bin
models (2) include:

1. Continuous variables must be cut up into discrete variables. This almost always
results in a loss of predictive information and therefore a loss of accuracy.

2. Asthe number of discrete variables increases, the number of bins increases expo-
nentially. In order to maintain accuracy, there must be a corresponding exponen-
tial increase in the size of the patient population.

3. The proliferation of bins reduces the ability to understand the phenomena. Bin
proliferation negates the main advantage of a bin madel; namely, its ease of
understanding and ease of use.

Bin models are rarely used in situations in which there are more than two or
three predictive factors or where each factor possesses more than a few strata.

A partial solution to the problems of a bin model is a stage model (2). A
stage model is the grouping of bins into super-bins. The justification for the
grouping is the assumption that the factors selected represent “stages” of the
disease process. For example, in breast cancer, the TNM staging system com-
bines 40 TNM classification bins into six super-bins (TNM stages) based on
decreasing survival (“stages of survival”).

A small set of stages has the potential to maintain explanatory simplicity
and ease of use. Problems with stage models include:

1. The combining of bins into super-bins/stages can substantially reduce predictive
accuracy.

2. Stage systems do not overcome the exponential increase in bins and patients
associated with adding a variable to the analysis: They just delay the problem at
a cost in predictive accuracy. If the stages are held constant when variables (and
their associated bins) are added to the staging system, the potential improvement

Tests to Increase Predictive Power 7

in accuracy associated with the additional bins will be small to nonexistent. But,
if the stages are expanded to accommodate additional bins, the system loses its
ease of understanding and usefulness. Thus, attempts to improve predictive accu-
racy by adding variables to a bin/stage model are rarely successful.

3. The problems of cutting up continuous variables, with the resulting loss in pre-
dictive accuracy, remains.

4. Finally, if a single staging system is used for more than one cancer site, the stag-
ing rules may be more applicable to some sites than to other sites. The sites to
which they do not apply will experience major losses in predictive accuracy.

Indexes associate numerical scores (usually based on a bounded, linear
scale) with bins or groups of bins. Each score is associated with one of a small
number of disease stages (usually a severity of illness system). Each patient
receives the prediction of the stage in which their score places them. Indexes
offer some flexibility in the grouping of bins, but at the cost of further degrada-
tion in predictive accuracy because additional information is lost. The simplest
example of an index is the Apgar. An example in breast cancer is the
Nottingham Index (4).

The accuracy of different stratifications of a predictive factor(s) can be com-
pared. For a specific site (i.e., breast) and predictor(s) (tumor size <2, 2-5, >5)
any bin or group of bins, or stage (bin or index) or group of stages, can be com-
pared, in terms of a specific outcome, with another stratification (tumor size <1,
1—<2, 2— <3, 3— <4, 4— <5, 5->5). This contrast can be over a single time inter-
val without respect to events within the interval (i.e., logistic regression) or with
respect to the events within the interval (5, 6). For a single interval without respect
to events within the interval, accuracy has been assessed by several discrimina-
tive association approaches, including Goodman and Kruskall’s Gamma (7),
Kendall’s Tau (8), or the area under the receiver operating characteristic (9).

The usual descriptive approach for contrasting predictive factors across a
series of event time intervals is the Kaplan-Meier product-limit method (5)
(inferential methods that can accommodate continuous variables, and that usu-
ally assume proportional hazards, will be discussed later when regression meth-
ods are presented). A Kaplan-Meier plot should always include confidence
intervals for each stratum (i.e., each step function). A significant difference
within a Kaplan-Meier stratification (tumor size <2, 2-5, >5) is usually
assessed by a log-rank test (10). It is important to note that there is currently no
method for comparing the accuracy of two different Kaplan-Meier plots (i.e.,
two different stratifications of the same predictive factors). It is incorrect to
use the p-value of the log-rank test to select one stratification over another,
because the log-rank test only determines whether a stratification is likely to
have occurred by chance. An extreme stratification may result in smaller
p-values, but it may also reduce predictive accuracy.
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Decision trees split predictive factors to maximize predictive power using a
loss function, such as the log-likelihood and a greedy search algorithm. A well-
known decision tree approach is the Classification and Regression Trees (CART)
recursive partitioning method (11). Empirically, we have not found CART, either
pruned or shrunk, to be the most accurate statistical method when compared to
regression methods. Its problems include the selection of the correct loss func-
tion, difficulty dealing with continuous variables, and overfitting when search-
ing for the best predictors when there are more than two or three splits.

Univariate regression methods are not appropriate for determining whether a
variable is a predictive factor. Univariate methods should not be used, because
new variables must be assessed in the context of the known factors, and because
some variables are only predictive when they interact with another variable.

Logistic regression assess the cumulative probability of a binary event
occurring by a specific time. It uses a maximum likelihood loss function and a
greedy search technique. It is a very efficient method for binary outcome prob-
lems (i.e., recurrence and survival). Its limitation is that it usually spans a large
time interval and does not distinguish when events occur within the time inter-
val. This limitation can be overcome if several sub-time intervals are created
within the overall time interval. Logistic regression models can be created for
each sub-time interval. Censoring can be accommodated by removing cases
that are censored within the time interval that censoring occurs.

Proportional hazards methods include the Cox (6) and less commonly the
Weibull or exponential (12). Proportional hazards methods assume that the
hazard of each patient is proportional to the hazards of all the other patients,
and that a patient’s hazard is related to that patient’s relative risk. The Cox
model does not create survival curves. For Cox-related survival curves, a
baseline hazard must be introduced (for example, Breslow-Cox estimates) (13).
Some researchers incorrectly believe that the Cox is the only regression method
that can deal with censoring (see paragraph on logistic regression above).
Because, in cancer, the proportional hazards’ assumption may be violated,
researchers who use the Cox model must demonstrate that the proportional
hazards assumption holds for their population.

Artificial neural networks are a general regression method (14,15). They
can perform almost any regression task. In addition, three-layer artificial neu-
ral networks automatically capture nonlinearity and complex interactions. They
can handle censoring in the same way that multi-interval logistic regression
handles censoring. Artificial neural networks are as transparent as the phenom-
ena contained in the data. For simple phenomena, artificial neural networks are
_ easily understood; for complex phenomena they are complex and less easily
understood. Artificial neural networks are especially recommended in the
domain of complex systems (e.g., the molecular-genetic domain of cancer).

%
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4. Reporting Predictive Factor Research Resuits

There is a great deal of variation in the reporting of predictive factor results.
This variability makes it difficult to understand and compare results. The fol-
lowing is a recommended approach to reporting the discovery of a new predic-
tive factor or the validation of an existing factor.

For a defined subset of patients with the ___a_
_c___predictive factor for__d __ whenassayed ___e by f , for
the g on a test data set with __h___ characteristics, the ___ i is sig-
nificant at the ___j___ level using the ___k___ statistical method, which also
incorporates ___ 1 predictive factors, for ___m___ therapy. Using the
. n method to assess its accuracy, the ____k___ statistical model is

0 accurate on the test data set.

“Defined” means specification of collection method, inclusion and exclu-
sion criteria, and so forth.

disease, b is a

a: Name of disease.
b: Name of the predictive factor.
c: Type and subtype of predictive factor (i.e., risk, diagnosis, prognosis; natural
history, therapy-dependent, post-therapy).
Outcome (i.e., 5-yr breast cancer-specific survival).
Time of assay (i.e., at discovery, prior to therapy, after therapy).
Specific laboratory method (i.e., immunohistochemistry).
If stratified, the specific range/cut-point/and so forth of the prognostic factor. If
. the variable value is based on rater judgment, then Cohen’s «k should be reported.
Relevant characteristics of the data set, including:
1. Data set size,
2. Number of events, and
3. Whether the therapy was randomized.
i: The value and confidence interval.
For example, p < 0.05 for one test of the data. If multiple tests of the data are
performed, an adjustment may be required.
Type of multivariate statistical method (i.e., logistic regression, Cox).
Other relevant prognostic factors, if they are included in the multivariate
model.
m: Specific type of surgery, chemotherapy, radiation therapy.
n: Area under the receiver operating characteristic (Az) R?, x-square, etc.
o: Numerical value and its range of possible values (i.e., Az = 0.75, 0.50, —1.0).

Q »e
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