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Artificial Neural Networks Improve the Accuracy of
Cancer Survival Prediction
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BACKGROUND. The TNM staging system originated as a response to the need for
an accurate, consistent, universal cancer outcome prediction system. Since the
TNM staging system was introduced in the 1950s, new prognostic factors have
been identified and new methods for integrating prognostic factors have been
developed. This study compares the prediction accuracy of the TNM staging system
with that of artificial neural network statistical models.

METHODS. For 5-year survival of patients with breast or colorectal carcinoma,
the authors compared the TNM staging system’s predictive accuracy with that of
artificial neural networks (ANN). The area under the receiver operating characteris-
tic curve, as applied to an independent validation data set, was the measure of
accuracy.

RESULTS. For the American College of Surgeons’ Patient Care Evaluation (PCE)
data set, using only the TNM variables (tumor size, number of positive regional
lymph nodes, and distant metastasis), the artificial neural network’s predictions
of the 5-year survival of patients with breast carcinoma were significantly more
accurate than those of the TNM staging system (TNM, 0.720; ANN, 0.770; P <
0.001). For the National Cancer Institute’s Surveillance, Epidemiology, and End
Results breast carcinoma data set, using only the TNM variables, the artificial
neural network’s predictions of 10-year survival were significantly more accurate
than those of the TNM staging system (TNM, 0.692; ANN, 0.730; P < 0.01). For
the PCE colorectal data set, using only the TNM variables, the artificial neural
network’s predictions of the 5-year survival of patients with colorectal carcinoma
were significantly more accurate than those of the TNM staging system (TNM,
0.737; ANN, 0.815; P < 0.001). Adding commonly collected demographic and ana-
tomic variables to the TNM variables further increased the accuracy of the artificial
neural network’s predictions of breast carcinoma survival (0.784) and colorectal
carcinoma survival (0.869).

CONCLUSIONS. Artificial neural networks are significantly more accurate than the
TNM staging system when both use the TNM prognostic factors alone. New prog-
nostic factors can be added to artificial neural networks to increase prognostic
accuracy further. These results are robust across different data sets and cancer
sites. Cancer 1997; 79:857-62. © 1997 American Cancer Society.
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he TNM staging system originated as a response

to the need for an accurate, consistent, universal
cancer outcome prediction system.' Since the TNM
staging system was introduced in the 1950s, new prog-
nostic factors have been identified** and new methods
for integrating prognostic factors have been devel-
oped.? These methods may be capable of (1) providing
more accurate predictions than the TNM staging sys-
tem, using the TNM variables alone (primary tumor
size, regional lymph node involvement, and distant
metastasis), and (2) further increasing prognostic ac-
curacy by integrating new prognostic factors with the
TNM variables. This study compares the cancer spe-
cific 5-year survival prediction accuracy for breast and
colorectal carcinoma of the TNM staging system with
that of artificial neural network statistical models.

METHODS

Data ;
We used the Commission on Cancer’s breast and colo-
rectal carcinoma Patient Care Evaluation (PCE) data
sets and the National Cancer Institute’s Surveillance,
Epidemiology, and End Results (SEER) breast carci-
noma data set.

In October 1992, the American College of Sur-
geons (ACS) requested cancer information from ACS-
accredited hospital tumor registries in the United
States. Specifically, they requested the first 25 cases of
first-diagnosis breast and colorectal carcinoma seen
at each institution in 1983, as well as follow-up infor-
mation, including deaths, through the date of the re-
quest. Variables from this data set used in the breast
carcinoma analysis were age, race, payment method,
menopausal status, family history, previous biopsy,
other cancer, other breast carcinoma, nipple dis-
charge, mammogram, where in the breast the carci-
noma occurred, necrosis, histologic grade, estrogen
receptor status, progesterone receptor status, number
of lymph nodes positive, number of lymph nodes ex-
amined, presence or absence of distant metastasis, tu-
mor size, tumor type (in situ, extension to chest wall,
or inflammatory), treatment (surgery, chemotherapy,
or radiation therapy), and patient outcome (alive or
dead). All variables were binary except age, tumor size,
number of positive lymph nodes, and number of
lymph nodes examined. The PCE data set contained
up to 8 years of follow-up information. The analysis
end point was breast carcinoma specific 5-year sur-
vival. Cases with missing data and those censored be-
fore 5 years were excluded. The data set was randomly
divided into a training set of 5169 cases, including
training and stop-training subsets, and a validation set
of 3102 cases.

Variables from the PCE data base used in the colo-
rectal carcinoma analysis were age, race, gender, signs

and symptoms (changes in bowel habits, obstruction,
jaundice, malaise, occult blood, abdominal pain, pel-
vic pain, rectal bleeding, or others), diagnostic and
extent-of-disease tests (endoscopy, radiography, bar-
ium enema, computed tomography scan, biopsy, car-
cinoembryonic antigen, X-ray, colonoscopy, flexible
sigmoidoscopy, intravenous pyelography, liver func-
tion tests, biopsy, or other tests), primary site of tumor,
level of tumor, histology, grade, number of lymph
nodes examined, number of lymph nodes positive, dis-
tant metastases, and patient outcome (alive or dead).
The end point was 5-year colorectal carcinoma spe-
cific survival. After removing cases with missing data
and censored patients, the data set was randomly di-
vided into a set of 5007 training cases, including train-
ing and stop-training subsets, and a validation set of
3005 cases.

The National Cancer Institute’s SEER breast carci-
noma data set, for new cases collected from 1977-
1982, with 10-year follow-up, was also analyzed. The
extent-of-disease variables for the SEER data set were
comparable to, but not always identical with, the TNM
variables. The end point was breast carcinoma specific
10-year survival. After removing cases with missing
data and censored patients, the data set was randomly
divided into a set of 3788 training cases, including
training and stop-training subsets, and a validation set
of 2999 cases.

Models

The TNM staging system used in this analysis was the
pathologic system based on the American Joint Com-
mittee on Cancer’s Manual for Staging of Cancer.' The
TNM staging system'’s predicted survival for a patient
in a particular stage is the average survival of patients
in that stage.

In medical research, the most commonly used ar-
tificial neural networks (ANN) are multilayer per-
ceptrons that use backpropagation training (Figure 1).
Backpropagation consists of fitting the parameters
(weights) of the model by a criterion function, usually
squared error or maximum likelihood, using a gradient
optimization method. In backpropagation artificial
neural networks, the error (the difference between the
predicted outcome and the true outcome) is propa-
gated back from the output to the connection weights
in order to adjust the weights in the direction of mini-
mum error. (For a more detailed description of artifi-
cial neural networks, see Burke* and Cross.’) The arti-
ficial neural network employed in this research was
composed of three interconnected layers of nodes: an
input layer, with each input node corresponding to a
patient variable; a hidden layer; and an output layer.
All nodes after the input layer sum the inputs to them
and use a transfer function (also known as an activa-
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FIGURE 1. Patient A’s variable values (Va—Za) are entered into the artificial neural network, followed by patient B, etc. Each variable’s input value is
multiplied by the weight between the input node for that variable and each hidden layer node it is connected to. All the weighted values going to a
hidden layer node are summed at the hidden layer node and go through a sigmoid function before being transferred to the output node. All the weighted
values coming into the output node are again summed and put through a sigmoid function. For each patient, the output is a probability from 0-1.0. In
training the artificial neural network, the output of each patient is compared with each patient’s true outcome. The weights are adjusted so that the next
time the patient is presented to the network, the network output is closer to the true outcome.

tion function) to send the information to the adjacent
layer nodes. The transfer function is usually a sigmoid
function, e.g., the logit. The connections between the
nodes have adjustable weights that specify the extent
to which the output of one node will be reflected in
the activity of the adjacent layer nodes. These weights,
along with the connections among the nodes, deter-
mine the output of the network.

The mathematical representation of an artificial

neural network shown here is equivalent to the graphi
model in Figure 1:

+ WX, (1
+ whh,) 2

h; = flwhx + whx, +
0; = glwith, + wsh, +
where “h;,” in Equation 1 is the output of each of the

hidden nodes j, fis a nonlinear transfer function, w"
is the weight from predictor i to hidden node j, and
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X; is an input variable. In Equation 2, ¢; is the predic-
tion of the network, g is a nonlinear transfer function,
w” is the weight to the output node, and h is the hidden
node output. It should be noted that Equation 2, with-
out the input from Equation 1, is equivalent to logistic
regression, where g is the logistic function, w is the
beta coefficient, and # is the x covariate.

Specifically, our artificial neural network (NevProp
software implementation) used backpropagation
training, the maximum likelihood criterion function,
and a gradient descent optimization method. The
number of input nodes correspond to the number of
input variables, the number of hidden layer nodes
ranged from three to five, and there was one output
mode. Significant differences in the receiver operating
characteristic areas between the TNM staging system
and the artificial neural network were tested according
to the method of Hanley and McNeil.® The training
data set was divided into training and stop-training
subsets. (Training was stopped when accuracy started
to decline on the stop-training data subset.) All analy-
ses employed the same training and validation data
sets, and all results were based on the one-time use
of the validation data sets.

Accuracy
There are three components to predictive accuracy:
the amount and quality of the data, the predictive
power of the prognostic factors, and the prognostic
method’s ability to capture the power of the prognos-
tic factors. This study focused on the third component.
The measure of comparative accuracy is the trape-
zoidal approximation to the area under the receiver
operating characteristic curve.” The area under this
curve is a nonparametric measure of discrimination.
While squared error summarizes how close each pa-
tient’s prediction is to the true outcome, the receiver
operating characteristic area measures the relative
goodness of the set of predictions as a whole by com-
paring the predicted probability of each patient with
that of all pairs of patients. This area is calculated
using the predictive scores of each algorithm in order
to compare their average accuracy in predicting out-
come. The receiver operating characteristic area is in-
dependent of both the prior probability of each out-
come and the threshold cutoff for categorization, and
its computation requires only that the algorithm pro-
duce an ordinally-scaled relative predictive score. In
terms of mortality, the receiver operating characteris-
tic area estimates the probability that the algorithm
will assign a higher mortality score to the patient who
died than to the patient who lived. The receiver op-
erating characteristic area varies from 0 to 1. When
the prognostic score is unrelated to survival, the score
is 0.5, indicating chance accuracy. The farther the

TABLE 1
Comparison of the TNM Staging System with the Artificial Neural
Network

TNM staging  Artificial neural
Data sets system network
PCE breast CA, TNM variables alone 0.720 0.770*
PCE breast CA, TNM and added variables 0.720 0.784°
SEER breast CA, TNM variables alone 0.692 0.730°
PCE colorectal CA, TNM variables alone 0.737 0.815*
PCE colorectal CA, TNM and added variables ~ 0.737 0.869°

PCE: Patient Care Evaluation (Commission on Cancer); SEER: Surveillance, Epidemiology, and End
Results (National Cancer Institute).

*P < 0.001.

*P< 001

score is from 0.5, the better, on average, the prediction
model is at predicting which of the two patients will
be alive.

RESULTS

A comparison of the accuracy of the TNM staging sys-
tem and the artificial neural network is shown in Table
1. For the PCE breast carcinoma data set, using only
the TNM variables (tumor size, number of positive
regional lymph nodes, and distant metastasis), the ar-
tificial neural network’s predictions of breast carci-
noma specific 5-year survival were significantly more
accurate than those of the TNM staging system (TNM
0.720; vs. ANN, 0.770, P < 0.001). Since the TNM stag-
ing system is, by definition, limited to the TNM vari-
ables, additional variables do not improve the TNM
staging system's predictive accuracy. However, adding
commonly collected demographic and anatomic vari-
ables to the TNM variables further increased the accu-
racy of the artificial neural network (to 0.784).

We were able to test whether the artificial neural
network’s significant improvement in predictive accu-
racy was generalizable across data sets. For the Na-
tional Cancer Institute’s 1977-1982 SEER breast carci-
noma data set, using only the TNM variables, the arti-
ficial neural network’s predictions of 10-year survival
were significantly more accurate than those of the
TNM staging system (TNM 0.692 vs. ANN 0.730, P <
0.01).

We were able to test whether the artificial neural
network'’s significant improvement in predictive accu-
racy was generalizable across cancer sites. For the PCE
colorectal data set, using only the TNM variables, the
artificial neural network’s predictions of 5-year colo-
rectal carcinoma specific survival were significantly
more accurate than those of the TNM staging system
(TNM 0.737 vs. ANN 0.815, P < 0.001). Adding com-
monly collected demographic and anatomic variables



to the TNM variables further increased the accuracy
of the artificial neural network (0.869).

To clarify the clinical importance of the observed
increases in accuracy, we changed the area under the
curve (A,) scale to a -1 to +1 scale, i.e., [2(A, - 0.5)].
On this scale, 0 was chance and 1.0 was perfect predic-
tion. By this measure, the TNM staging system’s accu-
racy was 44% greater than chance for breast carcinoma
specific 5-year survival predictions. Placing the TNM
variables in the artificial neural network increased pre-
dictive accuracy to 54%, and adding variables that in-
dividually had little prognostic value to the artificial
neural network further increased prognostic accuracy
to 57% greater than chance prediction. Corresponding
increases in predictive accuracy specific to colorectal
carcinoma were as follows: 47% for the TNM staging
system increased to 63% when the TNM variables were
placed in the artificial neural network, and that in-
creased to 74% when several commonly collected vari-
ables were added to the artificial neural network.

DISCUSSION

The TNM staging system is only moderately accurate
in its breast and colorectal carcinoma specific 5-year
survival predictions. The significant superiority in pre-
dictive accuracy that the artificial neural network
showed when compared with the TNM staging system
across data sets and cancer sites suggests that it is able
to improve our ability to predict the survival of cancer
patients. In addition, artificial neural networks can be
expanded to include any number of prognostic factors.
They can accommodate continuous variables and they
can provide presurgery and postsurgery treatment
predictions.

Artificial neural networks are a class of nonlinear
regression and discrimination statistical methods. They
are of proven value in many areas of medicine.®'* They
do not require a priori information regarding the phe-
nomenon, and they make no distributional assumptions.
When the appropriate method is used to avoid overfit-
ting (i.e., loss of generalization by fitting the patterns to
the test data too precisely), artificial neural networks are
usually at least as accurate as classical statistical models,
and, depending on the complexity of the phenomena,
they can be much more accurate. In predicting 5-year
breast carcinoma specific survival, they have been
shown to be more accurate than logistic regression, clas-
sification and regression trees (CART; pruned or shrunk),
and principal components analysis.?’

The improvement in prognostic ability made possi-
ble by artificial neural networks may be clinically im-
portant for therapy, clinical trials, patient information,
and quality assurance. In decision-making regarding
therapy, it may allow the efficient separation of patients
with a poor prognosis (who require therapy) from pa-
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tients with an excellent prognosis (who require little or
no therapy), and it may predict who will respond to
a particular therapy. In clinical trials, it may decrease
interpatient variability, This would allow for the creation
of more homogenous patient populations for clinical
trials, resulting in smaller clinical trial patient popula-
tions, less expensive trials, and the ability to detect treat-
ment effects that would be undetectable in more hetero-
geneous study populations. With regard to patient infor-
mation, it may give patients a clearer understanding of
the time course of their disease. Finally, for assessment
and quality assurance, it may provide a better severity
of illness adiustment.
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