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ABSTRACT 
The future explanatory power in biomedicine will be at the molecular-genetic level of analysis 
(rather than the epidemiologic-demographic or anatomic-cellular levels). This is the level of complex 
systems. Complex systems are characterized by nonlinearity and complex interactions. It is difficult 
for traditional statistical methods to capture complex systems because traditional methods attempt 
to find the model that best fits the statistician's understanding of the phenomenon; complex systems 
are difficult to understand and therefore difficult to fit with a simple model. Artificial neural networks 
are non parametric regression models. They can capture any phenomena, to any degree of accuracy 
(depending on the adequacy of the data and the power of the predictors), without prior knowledge 
of the phenomena. Further, artificial neural networks can be represented, not only as formulae, but 
also as graphical models. Graphical models can increase analytic power and flexibility. Artificial 
neural networks are a powerful method for capturing complex phenomena, but their use requires a 
paradigm shift, from exploratory analysis of the data to exploratory analysis of the model. 

24.1 Introduction 

In the past, most biomedical phenomena were analyzed at the demographic-epidemiologic 
or anatomic-cellular levels. Since phenomena at these levels is largely linear or nearly lin­
ear, traditional statistical models were very helpful. One result of these analyses is that, 
today, most biomedical variables are linear or nearly linear variables. But the future will 
not be like the past. The future explanatory power in biomedicine is at the molecular­
genetic level of analysis. This level is characterized by complex systems, i.e., nonmono­
tonicity and complex interactions. Complex systems are difficult for traditional statistical 
models to capture because traditional methods require a priori information about the vari­
ables in order to represent the variables in the model. Thus, the traditional statistician 
must "explore" the data, and must explicitly model what is discovered. But exploration 
and explicit modeling is not always practical at the molecular-genetic level, where there 
can be twenty or more variables, and where the variables may interact in three-way and 
higher combinations. 

There is evidence that cancer is a complex system and that future prognostic factors 
will be nonmonotonic and exhibit complex interactions. Cancer is primarily a genetic 
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disease (Fearon [Fearon90]; Fishel et al. [Fisher93]; Leach et al. [Leach93]) and a complex 
system. Cancer genes do not act in isolation; oncogenes, suppressor genes, and genetic 
mutations cause cancer through the complex interaction of the genes and their products 
(Papadopoulos et al. (Papadopoulos94]; Steel (Steel93]). A cascade of genetic abnormalities 
is required to produce a cancer (Knudson (Knudson85]; Fearon and Vogelstein (Fearon90]). 
Thus, it cannot be assumed (1) that a gene or its product will be monotonic or that it 
will have an independent prognostic value before it is combined with other genes and/or 
their products, (2) that gene interactions are binary, or (3) that there will only be a few 
simple genetic interactions. Furthermore, it will probably not be possible to specify in 
advance of the analysis which complex genetic interactions exist. The need to capture 
nonmonotonicity and complex interactions exists because the prognostic value of the 
genetic changes and their products can depend on their nonmonotonic characteristics and 
interactions (Fearon and Vogelstein [Fearon90]). 

24.2 Artificial Neural Networks 

Artificial neural networks are a class of nonlinear regression and discrimination statis­
tical methods, and they are of proven value in many areas of medicine (Westenskow 
et al. [Westenskow92]; Tourassi et al [Tourassi93); Leong and Jabri [Leong92); Palombo 
[Palombo92); Gabor and Seyal [Gabor92); Goldberg et al. (Goldberg92); O'Leary et al. 
[O'Leary92); Dawson et al. (Dawson91); Wu et al. [Wu93); Astin and Wilding (Astin92); 
Weinstein et al. [Weinstein92]). In medical research, the most commonly used artificial 
neural networks are feed-forward networks of simple computing units that use backpropa­
gation training. A feed-forward network is usuallY composed of three interconnected layers 
of nodes (computing unit): an input layer, a hidden layer, and an output layer. In our case, 
each input node corresponds to a patient variable. All nodes after the input layer sum the 
inputs to them and use a transfer function (also known as an activation function) when 
they send the information to the adjacent layer nodes. The transfer function is usually a 
sigmoid function such as the logistic. The connections between the nodes have adjustable 
weights that specify the extent to which the output of one node will be reflected in the 
activity of the adjacent layer nodes. These weights, along with the connections among the 
nodes, determine the output of the network. . · 

Backpropagation consists of fitting the parameters (weights} of the model by a crite­
rion function, usually square error or maximum likelihood, using a gradient optimization 
method. In feed-forward networks using backpropagation, the error between actual and 
expected network output units is propagated back from the output through the connec­
tions between nodes, in order to adjust the connection weights in the direction of minimum 
error. 

The mathematical representation of a feed-forward network as described above can be 
viewed as a series of regression equations within a regression equation, where there can 
be as many regression equations as is necessary to fit the phenomenon. Thus, 

hi 

Ok 

f(wj1xl + wj2x2 + · · · + wjnxn) 

g(w2lhl + w22h2 + · · · + w~nhn) 
(24.1) 

(24.2) 

equation (24.1) specifies the output of each of the hidden nodes j, f is a nonlinear transfer 
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·function, w1; is the weight from input unit i to hidden node j, and x; is the value of an 
jnput variable. Equation (24.2) specifies the output or prediction, ok, of the network, 
where g is a nonlinear transfer function, w2i is the weight of the connection from hidden 
unit j to output node k, and hi is the hidden node output. It should be noted that 

,equation (24.2), without equation (24.1) input, is equivalent to logistic regression, where 
.g is the logistic function, w is the beta coefficient, and h is the x covariate. Artificial 
neural networks with sufficient hidden units can approximate any continuous function to 
any degree of accuracy (Hornik et al. (Homik89); Leshno et al. (Leshno93]). 

24.3 Clinical Example 

We have compared the prognostic accuracy of the TNM staging system (Beahrs et al, 
1992) and an artificial neural network according to five year cancer-specific survival. 

Data: We have used three data sets (each of approximately 5, 000 cases) in these 
analyses: two from the American College of Surgeons, the Patient Care Evaluation (PCE) 
breast cancer and colorectal cancer data sets; the National Cancer Institute's Surveillance, 
Epidemiology, and End Results (SEER) breast cancer data set; and the Mayo Clinic 
prostate cancer data set. The variables in the PCE, SEER, and Mayo data sets are either 
binary or monotonic. The factors were selected in the past for collection because they were 
significant in a generalized linear model, e.g., logistic regression, There is no predictive 
model that can improve upon a generalized linear model when the predictor variables 
meet the assumptions of the model and there are no interactions. 

Accuracy: There are three components to predictive accuracy: the quality of the data, 
the predictive power of the prognostic factors, and the prognostic method's ability to 
capture_ the power of the prognostic factors. This work focuses on the third component. 
Comparative accuracy is assessed by the area under the receiver operating characteristic 
(ROC) curve (Hanley and McNeil [Hanley82]). The receiver operating characteristic area 
varies from zero to one. When the prognostic score is unrelated to survival, the score is 
.5, indicating chance accuracy. The farther the score is from .5 the stronger the prediction 
model. Specifically, the TNM staging system's predictive accuracy is determined by com­
paring (using the area under the ROC curve) its prediction for each individual patient, 
where the prediction is the fraction of all the patients in that stage who survive, to each 
patient's true outcome. 

Model: The artificial neural network results reported in this paper are based on back­
propagation training which uses the maximum likelihood criterion function and the gradi­
ent descent optimization method and the "NevProp" software implementation for train­
ing. Significant differences in the receiver operating characteristic areas between the TNM 
staging system and the artificial neural network are tested following Hanley and McNeil 
(Hanley82). The training data set (approximately 3, 500 cases) is divided into training (ap­
proximately 2, 000 cases) and stop-training (approximately 1, 500 cases) subsets. Training 
is stopped when accuracy starts to decline on the stop-training data subset. All analyses 
employ the same training and testing (validation) data sets, and all results are based on 
the one time use of the testing data sets. 

Results: A comparison of the accuracy of the TNM staging system and the artificial 
neural network (Table 24.1) using the PCE breast cancer data set, which examines breast 
cancer-specific five-year survival accuracy for only the TNM variables, demonstrates that 
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TABLE 24.1. Comparison ofTNM staging system and artificial neural networks (all comparisons are for 
five year, cancer-specific survival). 

DATA SETS 
PCE 1983 Breast Cancer - TNM v 
PCE 1983 Breast Cancer - 54 v 
SEER 1977 Breast Cancer- TNM v, 10 yr 
PCE 1983 Colorectal Cancer - TNM v 
PCE 1983 Colorectal Cancer - 87 v 
Mayo Clinic Prostate Cancer 

TNM 
.720 
.720 
.692 
.737 
.737 
.563 

ANN 
.770 
.784 
.730 
.815 
.869 
.811 

the artificial neural network's predictions are significantly more accurate (TNM .720 vs. 
ANN .770, p < .001). Adding 51 commonly collected variables to the TNM variables 
further increases the accuracy of the artificial neural network (.784). Extending these 
results to the SEER breast cancer data set, with a breast cancer-specific ten year survival 
endpoint; using only the TNM variables, the artificial neural network's prognostic accuracy 
is significantly greater than the TNM staging system (TNM .692 vs. ANN .730, p < .01). 

Using the PCE colorectal data sets, the predictive accuracy of the two methods can be 
compared. For only the TNM variables, the artificial neural network's prognostic accuracy 
is significantly greater than the TNM stage model in predicting colorectal-specific five year 
survival (TNM .737 vs. ANN .815, p < .001). Adding 84 commonly collected factors to 
the TNM variables further increases the accuracy of the artificial neural network (.869). 

The Mayo Clinic data set demonstrates that, for prostate cancers represented in its 
corpus, the TNM staging system has a low prognostic accuracy (.563), and that the 
artificial neural network, with other commonly collected variables, is significantly more 
accurate (TNM .563 vs ANN .811, p < .001). 

24.4 The Future of Artificial Neural Networks 

To demonstrate the power of the artificial neural network to capture unanticipated non­
monotonicities and complex interactions, a constructed nonmonotonic variable is added 
to the 54 PCE breast cancer variables. The constructed nonmonotonic variable consists 
of two normal distributions centered at zero, one having a standard deviation of 1 for pa­
tients who are alive at five years, the other having a standard deviation of 10 for patients 
who are dead by five years. If the artificial neural network cannot capture nonmonotonic­
ity without a priori specification of the phenomena, then its accuracy should remain at 
.770 with the TNM variables and .784 with the 54 variables, on the test set. The artificial 
neural network does capture the predictive power of the nonmonotonic factor, and its 
accuracy increases to .948 with the TNM variables and to .961 with the 54 variables, on 
the test set (Table 24.2) 

A constructed complex three-way interaction is added to the 54 PCE breast cancer 
variables. The artificial neural network captures the informative three-way interaction, 
from among the 29,260 possible three-way interactions, its accuracy increases from .784 
to .942 on the test data set. It is the case that anticipated nonmonotonicity has, with 
varying degrees of success, been modeled by classical prediction models. Although it is 
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TABLE 24.2. PCE 1983 Breast Cancer Data: 5 year Survival Prediction Accuracy, nonmonotonic variable 
added or three-way interaction added. 

PREDICTION MODEL 

pTNM Stages 
Stepwise Logistic Regression 
Backpropagation ANN 

nonmonotonic variable three way 
TNM variables 55 variable 57 variable 
accuracy* 
.720 
.762 
.948 

accuracy* 
.720 
.776 
.961 

accuracy* 
.720 
.776 
.942 

* The area under the curve of the receiver operating characteristic. 

computationally intensive, classical prediction models can test for a predictive three-way 
interaction among 29,260 possibilities, but it is not clear how they would discover four­
way and higher interactions of nonlinear variables. It can be concluded that artificial 
neural networks are powerful models; they can capture the explanatory power inherent in 
complex systems. 

At the present time, using variables selected by traditional statistical methods, it is not 
required that an artificial neural network be more accurate than traditional statistical 
methods in order for it to be an appropriate statistical method for cancer prediction. 
Artificial neural networks can be recommended for cancer prediction because: {1) they 
are as accurate as the best traditional statistical methods (results not presented), (2) they 
are able to capture complex phenomena (e.g., nonmonotonicity and complex interactions) 
without a priori knowledge, and (3) they are a general regression method, therefore, if 
the phenomenon is not complex, so that accuracy can be maintained using a simpler 
model, artificial neural networks can be reduced to simpler models resulting in simpler 
representations. 

There are several possible objections to artificial neural networks, including: (1) they 
require an analysis of the model. They capture phenomena without requiring prior explo­
ration of the data, but they require exploration of the model. More will be said regarding 
model analysis later in the paper. (2) Some believe that artificial neural networks are 
overparameterized because they can have a large number of weights. Overfitting can be 
prevented by keeping the weights small, thereby reducing the effective number of degrees 
of freedom. This can be accomplished by penalizing large weights, or stopping the itera­
tive fitting algorithm before the weights have grown to their full size. It is often the case 
that, when one of these methods is used, predictive accuracy is better than it would be 
if we used a smaller model and fit the data without restriction. When a method is used 
that reduces the weights that are not being increased by the input variables, the weights 
to the hidden layer shrink, and when there are only linear relationships present, as the 
hidden layer weights approach zero the neural network approximates a generalized linear 
model. 

{3) It is thought that artificial neural networks are less "transparent" (the importance of 
the variables is less obvious), than traditional statistical models. This view of transparency 
fundamentally misunderstands the situation. Artificial neural networks are as complex 
as is necessary to capture the phenomenon. Generally, if the phenomenon is complex, 
the model must be complex. If the phenomenon is simple enough to be captured by 
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simple models, then artificial neural networks can be reduced to a simple model, and the 
importance of covariates is easily observed. For example, if the phenomenon is linear, 
then a two layer (no hidden layer) artificial neural network with linear transfer functions, 
is mathematically identical to linear regression, and the weights of the artificial neural 
network are identical to the beta coefficients of the linear regression model. Therefore, 
model transparency (i.e., ease of variable interpretation) is properly understood as a 
function of complexity and accuracy. For a simple phenomena, a properly chosen simple 
model is easily interpretable. For a complex phenomenon (e.g., complex interactions) and 
a properly chosen model, increases in model complexity result in increases in accuracy 
if overfitting is avoided. Increases in model complexity reduce the transparency of both 
traditional statistical models and artificial neural network statistical models. 

24.5 Domain Knowledge and Model Knowledge 

Domain knowledge is information regarding the phenomena acquired by examining the 
data, and model knowledge is information regarding the phenomena acquired by examin­
ing the empirically derived model. Both are required for understanding phenomena, but 
their relative importance in the overall analysis can differ. In traditional statistics domain 
knowledge is the dominant approach. The statistician talks to the researcher, who sug­
gests where the statistician can explore the data. The statistician then examines the data, 
finds the best fitting model, and performs inferential calculations to determine variable 
significance and importance. But this is not the only possible approach to understanding 
phenomena. Selection of the best (most accurate predictions) model can be based on either 
knowing the relationships between the predictors and the relationship of the predictors to 
the phenomenon, and selecting the model that best captures these relationships, or, if the 
relationships are not known a priori, selecting a model that is capable of capturing any 
relationships. This latter approach, selecting the model that can capture any phenomena, 
is very different from the traditional approach. It requires that the model be explored 
rather than the data. The relationships are captured in the model, and one decomposes 
the model in order to discover the phenomena. 

It should be noted that, in terms of models, there is no difference between predic­
tion and classification. Prediction and classification differ in the questions being asked, 
i.e., the character of the data and the type of outcome. Thus robotic control, from a 
model-theoretic perspective, does not differ from cancer-outcome prediction: vision is 
classification and movement is prediction. 

There are some aspects of the analysis of a phenomena that are domain specific, and 
some that are model specific. For example, the number of hidden layer nodes (i.e., sub­
regression equations) is domain specific. The number of hidden layer units cannot be 
determined, a priori, by any analytic method because the number of units depends on the 
complexity of the phenomena; a simple phenomena requires no hidden units, a complex 
may require five or ten hidden units. 

An example of model analysis is the determination of whether the phenomenon exhibits 
nonmonotonicities or complex interactions. The approach is to compare the results of a 
two-layer neural network with those of a three-layer neural network. If the two-layer is 
significantly less accurate than the three-layer neural network, then there are nonmono­
tonic relationships, interactions, or both. If there is no difference between the two models, 
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then the model can be simplified. If there is a difference, then a complex (three-layer) 
model must be used to capture the nonlinearities and interactions. 

For simple phenomena, e.g., phenomena that do not require the use of a hidden layer 
in an artificial neural network, artificial neural networks are as transparent as other sta­
tistical models. For complex models sensitivity analysis can determine the contribution 
of input variables in the artificial neural network prediction (Intrator [Intrator93]). But 
sensitivity analysis is not adequate because complex relationships, represented by com­
plex mathematical equations, are not easily understood. To understand these complex 
relationships visual models are needed. Buntine [Buntine94] points out "Graphical oper­
ations manipulate the underlying structure of a problem unhindered by the fine detail of 
the connecting functional and distributional equations. This structuring process is impor­
tant in the same way that a high-level programming language leads to higher productivity 
over assembly language."(p 160) The ability to represent and manipulate artificial neural 
networks, in terms of graphical models, provides power and flexibility in model analysis. 
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ABSTRACT We consider formal models of learning from noisy data. Specifically, we focus on 
learning in the probability approximately correct model as defined by Valiant. Two of the most 
widely studied models of noise in this setting have been classification noise and malicious errors. 
However, a more realistic model combining the two types of noise has not been formalized. We define 
a learning environment based on a natural combination of these two noise models. We first show 
that hypothesis testing is possible in this model. We next describe a simple technique for learning 
in this model, and then describe a more powerful technique based on statistical query learning. We 
show that the noise tolerance of this improved technique is roughly optimal with respect to the 
desired learning accuracy and that it provides a smooth tradeoff between the tolerable amounts of 
the two types of noise. Finally, we show that statistical query simulation yields learning algorithms 
for other combinations of noise models, thus demonstrating that statistical query specification truly 
captures the generic fault tolerance of a learning algorithm. 

25.1 Introduction 

An important goal of research in machine learning is to determine which tasks can be 
automated, and for those which can, to determine their information and computation 
requirements. One way to answer these questions is through the development and inves­
tigation of formal models of machine learning which capture the task of learning under 
plausible assumptions. 

In this work, we consider the formal model of learning from examples called "probably 
approximately correct" (PAC) learning as defined by Valiant [Val84]. In this setting, a 
learner attempts to approximate an unknown target concept simply by viewing positive 
and negative examples of the concept. An adversary chooses, from some specified function 
class, a hidden {0, 1}-valued target function defined over some specified domain of exam­
ples and chooses a probability distribution over this domain. The goal of the learner is to 
output in both polynomial time and with high probability, an hypothesis which is "close" 
to the target function with respect to the distribution of examples. The learner gains 
information about the target function and distribution by interacting with an example 
oracle. At each request by the learner, this oracle draws an example randomly according 
to the hidden distribution, labels it according to the hidden target function, and returns 
the labelled example to the learner. A class offunctions :F is said to be PAC learnable if 
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